Выбрать главу

или в другой форме:

СУММАРНОЕ КОЛИЧЕСТВО ДВИЖЕНИЯ НИКОГДА НЕ МЕНЯЕТСЯ

Столкновения и закон сохранения количества движения

Столкновения играют очень важную роль: бомбардировка стенок сосуда молекулами газа, производящего на сосуд давление изнутри; рассеяние атомов гелия на ядре атомов золота при прохождении через золотую фольгу; лобовые соударения нейтронов с атомами водорода, которые позволяют определить массу нейтрона; выбивание быстрыми электронами других электронов из атомов и даже соударения световых квантов, когда они, подобно пулям, налетают на электроны, — все это столкновения, к который мы можем с успехом применить наше новое правило и получить какие-то новые знания или глубже понять те или иные явления.

Мы считаем, что это же правило применимо и к «столкновениям» на расстоянии, таким, как гравитационное влияние Солнца на Земле, воздействия одной планеты на другую, медленные и спокойные «столкновения» Луны с нашим океаном, которые мы называем приливами. Действующие силы могут отличаться в деталях, но всеми столкновениями и взаимодействиями управляет, по-видимому, одно и то же правило, сформулированное Ньютоном в такой форме, что его можно было распространить на атомную физику и включить в новое осмысление мира, которое содержится в эйнштейновской теории относительности. Это правило гласит:

ПРИ ЛЮБОМ ВЗАИМОДЕЙСТВИИ В ЗАМКНУТОЙ СИСТЕМЕ (НА КОТОРУЮ НЕ ДЕЙСТВУЕТ ИЗВНЕ РЕЗУЛЬТИРУЮЩАЯ СИЛА) КОЛИЧЕСТВО ДВИЖЕНИЯ, РАССМАТРИВАЕМОЕ КАК ВЕКТОР, СОХРАНЯЕТСЯ.

Количество движения — вектор

В каждой части соотношения F∙Δt = Δ(Mv) содержится векторная величина. Сила есть вектор, время же не имеет направления в пространстве — это просто число (скажем, число тиканий часов), которое нужно рассматривать как множитель; скорость — вектор, а масса не имеет направления. Масса — это «скаляр», простое число (вроде числа тележек), которое нужно опять-таки рассматривать как множитель. (Умножение скорости 3 м/сек, направленной на восток, на 2 кг дает 6 кг∙м/сек, направленные на восток.) Поэтому мы предполагаем, что импульс силы F∙Δt и количество движения Мv — векторы; эксперимент это подтверждает. Полная формулировка второго закона Ньютона содержит указание на это обстоятельство: сообщаемое ускорение и, следовательно, производимое изменение количества движения совпадают по направлению с направлением приложенной силы. Это может показаться не очень существенным при лобовых столкновениях, когда все движение происходит по одной прямой, но в случае столкновений, происходящих под другими углами, нужно рассматривать количество движения как вектор. Когда сталкиваются автомобили, движущиеся в разных направлениях, и между ними происходит обмен количеством движения, оказывается, что величины Mv подчиняются правилу сложения векторов. На фиг. 195 показано столкновение автомобиля А, движущегося на восток, с автомобилем В, движущимся на север по обледенелой ровной дороге. После столкновения автомобили будут двигаться под некоторым углом к первоначальным направлениям их движения. При этом они будут обладать количеством движения, которое представляет собой векторную сумму количеств движения обоих автомобилей до столкновения.

Фиг. 195. Количество, движения как вектор.

а — движение автомобилей до и после столкновения; б — диаграмма векторов количества движения автомобиля А, автомобиля В и обоих автомобилей вместе.

На фиг. 196 показана бомба, скользящая по льду. Бомба разрывается на два осколка, количества движения которых при векторном сложении дают в сумме количество движения бомбы при ее скольжении по льду до взрыва[126].

Фиг. 196. Бомба на льду.

Внизу показана векторная сумма количеств движения обоих осколков.

Чтобы проверить векторный характер закона сохранения количества движения, оставим модель железной дороги с вагончиком и будем наблюдать за столкновением брикетов сухого льда на столе, покрытом листом алюминия. Можно также использовать маятники — стальные шары, подвешенные на длинных нитях[127]. В любом случае мы обнаруживаем, что количества движения после столкновения складываются по правилу сложения векторов, и их сумма равна сумме количеств движения до столкновения. Можно поступить и по-другому: проанализировать наши измерения, разложив каждое Mv на компоненты по двум взаимно перпендикулярным направлениям. Если первоначально двигалось лишь одно тело, то целесообразно выбрать ось х в направлении этого движения, а ось у перпендикулярно к оси х, затем можно разложить все количество движения на х- и у-компоненты. Тогда мы обнаружим, что сумма х-компонент после столкновения равна количеству движения до столкновения, а обе у-компоненты после столкновения равны и противоположны друг другу по направлению.

вернуться

126

Дальнейший геометрический анализ приводит к замечательному результату: при развале любого тела, которому сообщена скорость, будь то снаряд, ракета или атомное ядро, центр тяжести его осколков продолжает двигаться после взрыва по той же траектории, что и до взрыва. Предположим, что ракета, движущаяся по эллипсу в поле тяготения Земли, взрывается или выбрасывает вторую ступень. Центр тяжести (или центр масс) отдельных частей ракеты продолжает двигаться по эллипсу, как если бы ничего не случилось, пока один осколок не попадет на Луну или не возвратится на Землю или пока трение о воздух не станет нарушать изолированность системы. Нет ничего удивительного в том, что физики-ядерщики предпочитают изучать столкновения в системе, связанной с центром масс сталкивающихся частиц.

вернуться

127

Измерение скорости без измерения траектории сложнее, но его можно произвести, сделав серию моментальных фотографий на пленке через равные промежутки времени.