Выбрать главу

Типы течения

Когда жидкость обтекает неподвижный предмет, картина линий тока и характер сил, действующих на предмет, зависят от скорости потока. Обсудим некоторые типы течения жидкости вокруг неподвижного предмета.

1. Течение идеальной жидкости без внутреннего трения. Если бы жидкость была лишена трения (этот воображаемый случай был бы крайне неблагоприятен с практической точки зрения), линии тока огибали бы предмет максимально симметрично и плавно продолжались бы позади него (фиг. 229, а). Все слои жидкости двигались бы с одинаковой скоростью, равной общей скорости, если не считать некоторое повышение скорости около предмета, компенсирующее изменение сечения потока. Равнодействующая сил давления на поверхность предмета была бы равна нулю, жидкость, лишенная вязкости, не поднимала бы и не увлекала бы за собой предмет! Хотя такое поведение, по-видимому, противоречит опыту, все же идеальная лишенная вязкости жидкость иногда является полезной абстракцией для изучения распределения линий тока. Однако во всех реальных жидкостях существует внутреннее трение. Жидкость не может скользить вдоль поверхности твердого предмета, она неподвижна на его поверхности (или движется вместе с ним, если предмет движется). Полированная поверхность твердого тела в молекулярном масштабе оказывается слишком грубой и захватывает даже быстротекущую жидкость, которая образует у поверхности неподвижный слой. Поэтому предсказываемое теорией необычное поведение идеальной жидкости (не поднимает и не увлекает за собой предметы) никогда не наблюдается в действительности[141]. Наличие у жидкости внутреннего трения изменяет картину линий тока и распределение скоростей в потоке. В очень медленно движущемся потоке линии тока плавно изгибаются вокруг предмета; в очень быстром потоке позади предмета они образуют сложный шлейф из вихрей. Теперь опишем эти крайние формы и промежуточные между ними стадии для реальной жидкости, обтекающей твердый предмет.

Фиг. 229. Ламинарное течение.

а — идеальная жидкость без вязкости, F = 0; б — ламинарное течение в вязкой жидкости, F ~ v; в — турбулентное течение, F ~ v2; г — течение c пограничным слоем.

2. Очень медленное ламинарное течение. В этом случае характер течения полностью определяется наличием вязкости жидкости. Линии тока имеют точно такой же вид, как и в идеальной жидкости, но скорости распределяются совершенно по-другому. Далеко от предмета, где течение не нарушено, жидкость течет с полной скоростью. На поверхности предмета жидкость неподвижна. По мере удаления от предмета происходит постепенное возрастание скорости от одной линии тока к другой (фиг. 229, б).

Распределение линий тока и скоростей определяется внутренним трением жидкости («вязкостью»), которое создает действующую на предмет силу; эта сила изменяется прямо пропорционально скорости течения (F ~ v).

3. Предмет необтекаемой формы в быстром потоке; турбулентное течение. Когда скорость течения увеличивается, трение в жидкости уже не определяет полностью характер процесса, а все более важную роль начинают играть изменения количества движения в большом масштабе. Линии тока, как и раньше, при встрече с предметом расходятся, но за ним они уже полностью не смыкаются, (фиг. 229, в). Позади предмета линии закручиваются и образуют бурлящий ряд вихрей (водоворотов). Образование вихрей создает силу сопротивления, которая намного превосходит небольшое сопротивление, обусловленное внутренним трением жидкости.

Эта сила пропорциональна квадрату скорости течения (F ~ v2). Таким образом, предмет необтекаемой формы, быстро движущийся в воздухе, испытывает сопротивление, величина которого в широком интервале скоростей пропорциональна квадрату скорости. (Следовательно, сила, требуемая для поддержания движения, пропорциональна кубу скорости, поэтому удвоение скорости требует увеличения силы в 8 раз — это очень важно учитывать при проектировании кораблей.)

Ширина и интенсивность вихревого шлейфа за предметом зависит от формы предмета. Прямоугольный предмет, даже круглый мяч (предмет любой «необтекаемой» формы) создает в потоке большую вихреобразующую поверхность и испытывает большое сопротивление. Закругленный или заостренный нос несколько улучшает дело, но для хорошего обтекания предмет должен иметь длинный конусообразный хвост (см. фиг. 253, стр. 377). Превосходной обтекаемой формой обладают рыбы.

вернуться

141

Исключение составляет квантовая жидкость HeII. — Прим. ред.