Выбрать главу

Когда вы получите достаточное количество суммарных векторов, чтобы можно было приступить к нанесению линий тока, сотрите ненужные вспомогательные построения и оставьте в каждой точке только короткие стрелки, указывающие направление суммарного потока (фиг. 244, д, е).

Фиг. 244. Линии тока вокруг движущегося в воздухе вращающегося мяча.

а — линии тока «встречного» ветра (однородный поток воздуха, противоположный полету мяча); б — линии тока воздуха вокруг вращающегося мяча; в — суммирование обоих видов тока воздуха; г — оба вида тока воздуха накладываются один на другой и скорости складывают как векторы; д, е — маленькие стрелки показывают направление суммарной скорости в точке Р.

Длина этих стрелок не обязательно должна соответствовать величине скорости. Теперь можно сообразить, как провести непрерывные линии тока, направление которых везде совпадало бы со стрелками. Здравый смысл подсказывает следующее: 1) очень далеко от мяча вращательным движением можно пренебречь, там существует стационарный поток со скоростью v1, в котором линии тока горизонтальны и распределены равномерно; 2) очень близко к мячу преобладает вращение и линии тока практически будут круговыми; 3) в некоторой точке N под мячом v1 и v2 как раз уравновесят друг друга, создавая «нейтральную точку», в которой не будет движения. Чтобы закончить рисунок, надо продолжить утомительную работу по сложению скоростей, дополняя ее с помощью воображения, или можно обмануть себя и подсмотреть реальную картину линий тока, полученную каким-либо другим способом. Такой набросок может дать лишь поверхностное представление о суммарном распределении линий тока. Чтобы получить надежную картину, надо геометрическую работу выполнить при помощи математики и в первую очередь подробно исследовать распределение скорости вращения v2. На фиг. 245 приведена полученная более строгим методом картина распределения линий тока вокруг цилиндра, вращающегося в однородном потоке воздуха. Для мяча получается сходная картина.

Фиг. 245. Линии тока вокруг вращающегося цилиндра в однородном потоке воздуха.

Схема выполнена довольно точно по картине линий тока, предсказываемой уравнением 2V = 0. Этот математический закон описывает распределение линий тока и другие распределения «закона обратных квадратов».

Задача 5

Если вы раньше изучали физику, вы, возможно, сталкивались с подобной картиной в совершенно другом разделе физики. Если да, то где? Чисто ли случайно это сходство? Может ли оно иметь какое-либо практическое значение?

Задача 6

Задание имеет смысл только при том условии, что оно будет выполнено схематически и быстро. Применяя метод, использованный при построении фиг. 244, набросайте линии тока для потока, изображенного на фиг. 246.

Фиг. 246. Линии тока для источника и стока равной силы в бесконечном озере постоянной глубины.

В мелком озере со спокойной водой в точке А имеется постоянный приток воды, а в точке В равный ему сток. Набросайте линии тока в озере, воспользовавшись следующими указаниями. Если бы действовал только приток, то линии тока расходились бы от точки А в виде лучей. Вблизи А, где линии тока расположены тесно, скорость радиального течения будет велика; дальше от А скорость будет уменьшаться[148]. Если бы действовал только сток, то создалась бы подобная картина с радиальным течением по направлению к В. Нанесите на лист бумаги точки А и В на расстоянии нескольких сантиметров одна от другой, нарисуйте оба набора линий тока и с помощью графических построений и смекалки найдите суммарную картину. (Что в этом случае соответствует указаниям 1 и 2 на стр. 370, сделанным при обсуждении фиг. 247, г?)

вернуться

148

В «мелком» озере скорость течения пропорциональна 1/r. Но если бы А и В находились в «глубоком» океане, то скорость течения была бы пропорциональна 1/r2. Распределение суммарных линий тока в обоих случаях было бы примерно одинаковым.