Выбрать главу

ОПЫТЫ ДЛЯ КАЖДОГО СТУДЕНТА

Опыт 9. Небольшой лист бумаги возьмите обеими руками за один конец так, чтобы этот конец был горизонтален, а другой изгибался под действием собственного веса. Равномерно дуйте над поверхностью горизонтальной части бумаги (фиг. 254).

Наблюдайте за действием струи воздуха и объясните его. По существу здесь в самом простейшем виде проявляется тот же эффект, что и при полете самолета.

Опыт 10. Движение обтекаемого листа бумаги. (Вспомните шутливое замечание в гл. 1, что при проведении опытов с падающими телами вы, вероятно, не обратили внимания на некоторые простейшие из них.)

А. Уроните небольшой лист бумаги и понаблюдайте за его падением (если хотите, сравните его падение с падением скомканного листа).

Б. Придайте листу некоторую обтекаемость, отогнув небольшие полоски вдоль каждого края, чтобы получилось корытце, как на фиг. 255. Наблюдайте за его падением.

Фиг. 255. Корытце из бумаги.

В. Видоизмените опыт Б, складывая из бумаги фигуры различной формы. Вы получите большие возможности для изобретательности и критических размышлений.

Г. На основании проделанных опытов решите, является ли движение воздуха около падающего листа бумаги ламинарным, в котором сопротивление обусловлено внутренним трением (F ~ v), или более быстрым, с вихреобразованием (F ~ v2).

Убедитесь, что вы можете уверенно обосновать свое решение. (Правда, о форме движения воздуха можно догадаться, пустив дым вокруг падающего тела, но надо попытаться получить более строгое доказательство.)

Эффект Бернулли: «Демоны» иди наука?

Хотя конструкторы используют принцип Бернулли при создании летательных аппаратов, а инженеры прибегают к его помощи при конструировании различных приспособлений, он не является жизненно важной частью физической науки. Все же цель этой главы в основном демонстрация не практических применений, а того, как «работает» научная мысль. Начав с парадоксов притягивающей воронки и искривленного полета мяча, каждый из которых, по-видимому, требует для объяснения своего собственного особого «демона», мы пришли к единому принципу, который объясняет эти парадоксы и предсказывает новые.

Сначала чисто «эмпирически» (т. е. прямо из опыта) мы делаем простой вывод: где линии тока гуще, там течение быстрее, а давление меньше. Затем, когда мы размышляем над этим, здравый смысл подсказывает: если происходит переход от медленного течения к быстрому, то жидкость должна ускоряться. Потом мы привлекаем теорию в виде второго закона Ньютона (F = ma), в справедливости которого уверены: «Где есть ускорение, там должна действовать соответствующая сила». Применяя эту теорию к простому случаю, например к жидкости, текущей по неоднородной трубке, мы предсказываем, что при быстром течении давление должно быть меньше. Итак, если закон F = ma является всеобщим, мы должны ожидать эффекта Бернулли как примера его действия. (Поэтому, если бы этот эффект не существовал, нам следовало бы усомниться в общем характере закона F = ma.) Развитие теории с применением закона сохранения энергии и некоторых алгебраических выкладок позволяет найти соотношение между скоростью течения и давлением, которое подтверждается опытом:

1/2 (ПЛОТНОСТЬ ЖИДКОСТИ)∙(СКОРОСТЬ ТЕЧЕНИЯ)2 + (ДАВЛЕНИЕ В ЖИДКОСТИ) = ПОСТОЯННАЯ.

Иными словами, сумма (1/2 dv2 + p) должна иметь одно и то же значение во всех точках вдоль линии тока. Следовательно,

(Если жидкость переходит с одного уровня на другой, надо учесть также изменение потенциальной энергии.)

Тем самым мы свели несколько «демонов», каждый из которых мог объяснить только свой случай, к одному общему механизму, сочетающему закон F = ma и правила геометрии; хотя обе его составные части сами по себе «необъяснимы», они обычны во многих областях науки. Мы сократили число таинственных явлений, сведя все наши примеры к одной тайне, F = ma. Как сказал бы Конант, мы уменьшили «степень эмпиризма» нашего знания о поведении жидкости, продвинув тем самым науку вперед. Принцип, который помогает инженерам строить насосы, измерители расхода жидкости и газа и самолеты, а также проявления внутреннего трения жидкости и газа, с которыми мы еще встретимся при изучении молекул и атомов, теперь представляются разумными частями механики, которую мы строим вне всякой связи с парадоксами.