Выбрать главу

и

P = 8,0∙N для другой.

Постоянную (4,1 или 8,0) лучше всего определять по наклону прямой, а не по отдельным точкам или части данных. Проводя прямую линию, наименее уклоняющуюся от точек, мы автоматически находим среднее взвешенное значение.

Средние взвешенные значения

Среднее взвешенное — это такое среднее, при нахождении которого приписывают добавочный вес наиболее надежным данным и очень малый вес данным, содержащим, по-видимому, грубые ошибки. Определяя такое среднее арифметически, мы придаем большой вес достоверным данным, учитывая их при составлении суммы несколько раз, в то время как ненадежные данные учитываются только один раз. Потом мы делим сумму на число всех слагаемых, разумеется, считая слагаемые, которые брались повторно. Этот способ усреднения вполне приемлем и разумен, но таит в себе опасность. Дело в том, что он может побуждать нас получить как раз такой ответ, который мы надеемся получить!

Проводя прямую по точкам, мы замечаем следующее. Может получиться, что почти все точки хорошо укладываются на прямую, а одна или две точки отстоят далеко от нее. Если мы в конечном счете выбираем эту прямую, то ее наклон дает среднее взвешенное значение, при этом одна или две «выскочившие» имеют очень малый вес. Выпадение этих точек может быть результатом небрежности, и мы поступим разумно, если по существу пренебрежем ими. С другой стороны, большинство точек может укладываться на прямую из-за случайных ошибок; кроме того, немногочисленные выпадающие точки могут послужить ключом к важным выводам. Таким образом, есть опасность, что, проводя прямую по экспериментальным точкам, мы явимся жертвой предвзятого подхода к задаче. Но при достаточно внимательном отношении и хорошем навыке можно надеяться получить взвешенное среднее, которое будет достаточно надежным.

Прямая зависимость или пропорции

Проводя пробную прямую, мы задаем вопрос: «Имеет ли место линейная зависимость?». Мы должны прежде всего попытаться провести прямую через начало координат, даже если в начале координат нет ни одной экспериментальной точки. Это требование, возможно, бессмысленно. Так, на фиг. 299 дан график G для лагеря, в котором повара тоже едят картофель, но не входят в число обитателей.

Пунктирная прямая, проведенная через начало координат, заметно уклоняется от ряда точек, тогда как сплошная прямая проходит вблизи всех точек. В этом случае правильнее записать

ΔP ~ ΔN или ΔP = 2,1∙ΔN.

Прямая отсекает на вертикальной оси отрезок, равный 21,0, и мы можем написать

P = 21 + 2,1∙N.

Можно сказать, что персонал кухни съедает 21 кг картофеля в неделю и состоит, по-видимому, из десяти человек.

Указания к построению графиков

Приближенные графики. В процессе опыта бывает желательно сразу построить приближенный график, который позволит определить, достаточно ли проделано измерений. Здесь можно обойтись карандашом и бумагой в клетку (например, 0,5 см х 0,5 см).

Точные графики. Чтобы строить графики, которые можно легко читать и в то же время использовать для точной проверки результатов эксперимента, мы рекомендуем следовать приводимым ниже правилам.

Бумага. Строить графики нужно на бумаге, разграфленной на сантиметры и миллиметры, так называемой миллиметровке. Миллиметровые клетки можно делить на глаз на десятые доли (т. е, на сотые доли сантиметра). Бóльшие или меньшие клетки трудно делить на глаз с приемлемой точностью.

Масштаб. При построении графиков следует пользоваться такими масштабами, чтобы легко было наносить точки, умножая и деля числа на десять. Предположим, вы наносите на график значения массы в килограммах. Самый удобный масштаб — в 1 см 1 кг; выражать в 1 см 10 кг, 100 кг… или 0,1 кг… и т. д, тоже удобно. Следующая удобная для пользования серия масштабов: в 1 см 2 кг, 20 кг…, 0,2 кг… и т. д. При этих масштабах результаты измерений делят в уме на два и прямо наносят на график.

Еще одна серия масштабов, облегчающих построение графиков: в 1 см 5 кг, 50 кг…, 0,5 кг… и т. д. В этом случае нужно в уме удваивать результаты измерений передаем, как наносить их на график. Все другие масштабы, например 4 кг в 1 см и т. д., неудобны для пользования и обычно приводят к ошибкам при построении. Поэтому следует пользоваться одним из приведенных выше масштабов.