Таким образом, каждое вещество характеризуется определенной критической температурой, выше которой оно — несжижаемый газ, а ниже — либо пар, либо пар + жидкость, либо жидкость в зависимости от давления. Комнатная температура для большинства газов значительно выше их критической температуры, а для всех жидкостей, — разумеется, ниже ее. Азот — это газ, водяной пар — это пар, ртуть — это жидкость, а свинец — это твердое тело. На Солнце все они были бы газами, на Нептуне — твердыми телами.
Критическая температура воздуха равна —140 °C, гелия — всего лишь несколько градусов выше абсолютного нуля, воды — около +365 °C, углекислого газа 31 °C. В обычные нежаркие дни огнетушитель, скажем, на 3/4 заполнен жидким СО2, над которым находится пар[231]. В очень жаркие дни граница жидкости исчезает и вся она превращается в пар. Это превращение можно наблюдать в стеклянной трубке (фиг. 108). При повышении температуры жидкость сильно расширяется, становясь менее плотной, тогда как плотность пара растет. Затем граница исчезает, но появляется вновь при охлаждении после внезапного «проливного дождя» капель жидкости. Хотя это и опасный опыт, но происходящие в нем изменения восхитительны.
Мы еще вернемся к проблеме критической температуры после того, как расскажем о молекулярной картине испарения.
Фиг. 108. Критическая температура.
Стеклянная трубка с жидкостью и паром нагревается.
Закон Бойля и СО2
Вернитесь к фиг. 3 (стр. 331), на которой даны графики зависимости Р от V для воздуха. Углекислый газ проявляет ярко выраженные особенности, а при достаточно низкой температуре (ниже критической) они обнаружатся у любого газа. На фиг. 109 проводится сравнение между поведением воздуха и СО2.
Фиг. 109. Сравнение поведения углекислого газа с воздухом.
Графики представляют собой экспериментальные изотермы (зависимость давления от объема при постоянной температуре).
Выше 31 °C СО2 — газ, и когда температура становится гораздо выше критической, он достаточно хорошо подчиняется закону Бойля. При любой температуре ниже 31 °C при увеличении сжатия он превращается из ненасыщенного пара в насыщенный пар+жидкость, а затем в жидкость. Ненасыщенный пар при низких давлениях приближенно подчиняется закону Бойля. Во время сжижения давление остается постоянным (равным давлению насыщенного пара). Сжать жидкость, конечно, трудно, поэтому для нее кривые на графике Р — V резко взмывают вверх.
Таким образом, изотермы ниже критической температуры далеки от простых гипербол (PV — постоянно). Тем не менее усовершенствованный газовый закон Ван дер Ваальса достаточно хорошо описывает их. Об этом говорит фиг. 110, на которой для газа выбраны подходящие значения параметров а и b. В промежуточной части экспериментальной кривой (область сжижения) предсказания теории расходятся с экспериментом, но предсказываемое теорией поведение системы неустойчиво и его трудно обнаружить экспериментально.
Фиг. 110. Изотермы, предсказываемые модифицированным законом Ван дер Ваальса.
Сплошными линиями показаны РV-зависимости при различных температурах. Пунктирные линии показывают места, где поведение реальных веществ отличается от предсказаний.
Жидкость и пар
Молекулы в жидкости тесно прижаты друг к другу (вспомните, что жидкость несжимаема). Тем не менее ее молекулы должны двигаться, по-видимому, с той же долей кинетической энергии, которая предписывается газам законом равномерного распределения. В открытом блюдце жидкость медленно исчезает, превращаясь в невидимый пар, если же поместить жидкость в закрытую бутылку, испарение вскоре прекратится. В этом случае пар и молекулы воздуха находятся вверху, жидкость — внизу, температура стеклянных стенок вокруг них одна и та же. Возможно, между ними существует равномерное распределение — одна и та же кинетическая энергия у всех компонент: молекул пара (и воздуха), молекул жидкости при их коротких перебежках между соударениями и двойная доля (кинетическая энергия + потенциальная энергия) у каждой из дрожащих молекул стекла бутылки. Для молекул газа или пара стекло — не гладкая стена, а дрожащий строй колеблющихся атомов, которые при бомбардировке отдают все, что получают. Вот почему молекулы газа отражаются от твердых стенок с той же скоростью и кинетической энергией, а от горячих стенок — с большей. Поверхность жидкости для молекул газа — тоже не зеркальная гладь, а бурлящая агрессивно настроенная среда, из которой временами вылетают молекулы пара.
231
При атмосферном давлении СО2 не может существовать в виде жидкости. Если мы попытаемся охлаждением превратить его в жидкость, он станет твердым. Если из огнетушителя (давление около 60 атм) выпустить СО2 в воздух, жидкость, забирая скрытое тепло, будет испаряться, превращая остальное содержимое в облако хлопьев «сухого льда».