Выбрать главу

Постоянная KH относится к магнитным полям. Она появляется в выражении для силы, действующей со стороны магнитного поля на электрический ток. (См. также гл. 37 «Магнитные силы», т. 3 настоящего издания.) Существует соответствующая постоянная для электрического поля KE, которая появляется в законе Кулона (см. гл 33 «Электростатика. Электрические заряды и поля», т. 3 настоящего издания).

Посмотрите на колонку IV и сравните ее с колонкой III. Уравнения IV кажутся неполными, они портят общую симметрию[241].

Максвелл обнаружил этот дефект и исправил его, выдумав дополнительный ток в пустоте — «привидение», которое до тех пор даже никому и не снилось, но впоследствии ток этот был обнаружен экспериментально. А Как бы вы изменили уравнение IV, чтобы сделать его симметричным уравнениям III, если бы вам сказали, что часть уравнения пропущена (она была неизвестна еще в то время)? Попытайтесь.

Такое добавление не было ни счастливой догадкой, ни вдохновением свыше. Для Максвелла, отлично знавшего состояние науки, оно казалось обязательным, неизбежным расширением симметрии. В этом разница между развитием науки знающим специалистом и стихийным изобретательством энтузиаста-любителя.

Сделав свое фантастическое в то время добавление, Максвелл смог заложить всю связку уравнений в математический «автомат». Оттуда вышло удивительное уравнение знакомого вида — волновое уравнение, аналогичное тому, которое получилось для горба на веревке. Это новое уравнение утверждало, что изменяющиеся электрические и магнитные поля должны распространяться в виде волн со скоростью v = 1/√(KHKE), где КH — постоянная, характерная для магнитных эффектов, создаваемых движущимися зарядами, а КE — соответствующая электростатическая постоянная, введенная Максвеллом при усовершенствовании уравнений[242]. (Kg входит в закон обратных квадратов для сил, действующих между двумя электрическими зарядами.) Необычный вывод этого вы найдете в конце гл. 37[243].

К удовольствию Максвелла и удивлению его противников вычисленное значение v совпадало со скоростью света, который, как считалось в то время, представляет какие-то волны. Все сходилось к тому, что свет мог быть одним из видов предсказанных Максвеллом электромагнитных волн. Это произошло за много лет до того, как предсказание Максвелла было проверено путем непосредственной генерации электромагнитных волн электрическими токами. Работа Максвелла была одним из величайших достижений физики. А ныне пришедшие ей на смену столь же смелые гипотезы создают основы физики сегодняшнего дня.

Одним из величайших вкладов математики в физику явилась теория относительности, которую можно считать разделом и физики, и математики; для ее понимания требуется хорошее знание как математики, так я физики.

Сейчас мы обратимся к «Специальной теории относительности» Эйнштейна, потом снова вернемся к математике как языку науки.

Теория относительности

Теория относительности привела к видоизменению механики и ломке старых научных представлений. Она возникла из простого вопроса: «Какова скорость нашего движения в пространстве?» Попытки экспериментально ответить на этот вопрос создали затруднения, которые заставили ученых думать о пересмотре существовавших представлений. В результате подобных переоценок возникла теория относительности — блестящий пример приложения математики и методологии к нашим взглядам на пространство, время и движение. Теория относительности — это раздел математики. Поэтому популярное изложение этой теории без математики почти наверняка обречено на неудачу. Чтобы понять теорию относительности, вы должны либо проследить за всеми выкладками по обычным учебникам, либо, как это сделано в данной книге, разобраться в исходных фактах и окончательных результатах, приняв на веру все, что касается работы самой «машины» математики.

Что можно сказать о пространстве? Где находится начало отсчета фиксированной системы и с какой скоростью мы движемся в пространстве? Сейчас точка зрения Коперника кажется нам удобной и мы рисуем в воображении вращающуюся Землю, которая несется по своей орбите вокруг Солнца со скоростью около 120 000 км/час. Солнечная система как целое мчится к созвездию Геркулеса со скоростью 180 000 км/час, тогда как вся Галактика…

вернуться

241

Для дополнения уравнения IV вам потребуется ввести постоянную KE, соответствующую КH в уравнениях III. Знак минус в уравнении IV не необходим. Если уравнение IV дополнить, это несколько испортит симметрию, но этого требуют экспериментальные факты и сохранение энергии. Без этого не существовали бы радиоволны.

вернуться

242

В нашем курсе используются другие обозначения (см. гл. 33 и 37, т. 3). Силу между электрическими зарядами мы запишем в виде F =В∙(Q1Q2)/d2. Сравнение с формулой Максвелла показывает, то наше В равно 1/KE. Магнитную же силу между двумя отрезками проводов, по которым проходит ток, мы запишем в виде F = B'∙(C1L1)∙(C2L2)/d2, а наше В' равно КH. Предсказание Максвелла v = 1/√(KEKH) в. наших обозначениях выглядит так: v = √((1/B)∙B') = √(B'/B). Измерив В и В', можно предсказать скорость распространения электромагнитных волн. Арифметика здесь простая. Попытайтесь проделать вычисления и сравнить результат о измеренной скоростью света 3,0∙108 м/сек. (В наших единицах B = 9,00∙109, a B'=10-7.)

вернуться

243

Гл. 37Магнитные силы») входит в т. 3 настоящего издания.