Выбрать главу

Должно быть, мы летим по огромной эпициклоиде, не ведая об этом. Не ведая, ибо, как заметил Галилей, механика движения, а именно столкновений, полета снарядов и т. д., будет одной и той же как в покоящейся, так и в равномерно движущейся лаборатории[244]. Сам Галилей приводил в пример мысленные эксперименты с человеком, который на идущем по курсу корабле бросает камни с мачты. В гл. 2[245] мы иллюстрировали эту «галилееву относительность» мысленными экспериментами в движущемся поезде. Допустим, что один поезд проходит мимо другого с постоянной скоростью и без всяких толчков, причем все окутано таким туманом, что вокруг ничего не видно. Могут ли пассажиры определить, какой из поездов движется? Могут ли им помочь эксперименты по механике? Пассажиры могут наблюдать только относительное движение. Хотя все правила сложения векторов и законы движения выработаны в движущихся «земных» лабораториях, они тем не менее не обнаруживают никакого влияния этого движения.

Мы называем инерциальной любую систему отсчета или лабораторию, в которой справедливы законы Ньютона, предоставленные самим себе тела движутся по прямой с постоянной скоростью или остаются в покое, а сила сообщает пропорциональное ей ускорение. Мы установили, что любая система, движущаяся с постоянной скоростью относительно инерциальной, тоже будет инерциальна — в ней справедливы законы Ньютона. В последующих рассуждениях о галилеевой и эйнштейновской относительности мы предполагаем, что рассматриваем инерциальные системы подобно покоящейся относительно Земли. В обсуждениях общей теории относительности мы коснемся и других систем, в частности тех, которые ускоряются.

Природа не обеспечила нас строго инерциальной системой. Вращающаяся Земля в строгом смысле — не инерциальная система (ибо ее вращение вызывает центростремительное ускорение); если бы нам удалось найти одну идеальную систему, то принцип относительности гарантировал бы любое число других инерциальных систем. Любая система, движущаяся с постоянной скоростью по отношению к нашей первой, была бы столь же хорошей инерциальной системой; законы Ньютона, справедливые по определению в первоначальной системе, были бы справедливы и во всех остальных. Когда мы проводим опыты по механике и обнаруживаем, что законы Ньютона строго выполняются, то с точки зрения теории относительности просто демонстрируем, что наша первоначальная лаборатория была практически инерциальной системой. Напротив, любые эксперименты, демонстрирующие вращение Земли, показывают несовершенство нашего выбора инерциальной системы. Однако, сказав «Земля вращается», мы представляем себе идеальную систему, в которой законы Ньютона выполняются совершенно точно.

Теория относительности Галилея содержится в наших формулах. Когда для движущейся по горизонтали с ускорением ракеты мы пишем s = v0t + 1/2 at2, то это означает «запустить ракету со скоростью v0 и это скажется в качестве простого добавления слагаемого v0t к пройденному расстоянию».

То же самое можно сформулировать следующими словами: «Экспериментатор ε запускает ракету из состояния покоя и наблюдает движение по закону s = 1/2 at2. Другой экспериментатор ε', бегущий со скоростью v0, увидит движение по закону s' = v0t + 1/2 at2. Он должен добавить v0вследствие своего собственного движения» (фиг. 130).

Мы говорим, что равномерное и ускоренное движения не мешают друг другу, а просто складываются.

Наблюдатели ε и ε' сделали бы следующие заключения о расстоянии, пройденном за время t:

НАБЛЮДАТЕЛЬ ε

s = 1/2 at2

НАБЛЮДАТЕЛЬ ε'

s' = v0t + 1/2 at2

Оба вывода говорят о том, что ракета движется с постоянным ускорением[246].

Оба заключения говорят, что в начальный момент t = 0 ракета находилась в начале координат.

Первое заключение говорит, что наблюдатель ε видит, будто ракета начала движение из состояния покоя. В момент пуска часов t = 0 ракета по отношению к наблюдателю не обладала скоростью. В этот момент ракета двигалась вместе с ним, если сам он двигался (так что ему она казалась покоящейся), а он дал ей возможность двигаться с ускорением.

вернуться

244

Хотя при движении по орбите скорость Земли меняется, мы считаем ее постоянной на протяжении короткого времени эксперимента. На самом деле постоянство будет точным, так как любое изменение скорости Земли полностью компенсируется силой гравитационного притяжения Солнца, вызывающего эти изменения. На Земле в целом (например, в ее центре) мы не можем заметить никакого эффекта и видим разностный эффект в разных точках Земли, например приливы. Собственное вращение Земли приводит к заметным эффектам; маятник Фуко изменяет плоскость своего качания, а ускорение g на экваторе и полюсе оказывается разным и т. п. Однако там, где эти различия существенны, их можно учесть.

вернуться

245

Гл. 2Полет снарядов. Геометрическое сложение: векторы») входит в т. 1 настоящего издания.

вернуться

246

Первое утверждение проще, ибо оно принадлежит наблюдателю, который запустил ракету в момент t = 0 из состояния покоя.