y' = y,
z' = z,
t' = (t — (xv/c2))/√(1 — (v2/c2))
которые при замене v на —v переходят в преобразования
x = (x' + vt')/√(1 — (v2/c2)),
y' = y,
z' = z,
t = (t' + (x'v/c2))/√(1 — (v2/c2))
где с — скорость света в пустоте. Эта скорость существенно входит в новые правила измерения, ибо новые преобразования так и выбраны, чтобы все попытки измерить эту скорость давали один и тот же ответ. Симметричная форма преобразований показывает, что эксперимент никогда не выяснит абсолютного движения. Мы можем обнаружить движение одного экспериментатора относительно другого, но никогда не сможем сказать, кто из них движется на самом деле.
Новые преобразования, конечно, объясняют и нулевой результат опыта Майкельсона-Морли-Миллера, ибо они специально для этого предназначены. Они объясняют и аберрацию, предсказывая одну и ту же аберрацию независимо от того, что движется — звезды или мы. Но они ведут к видоизменению механики Ньютона. Другими словами, из двух бед нам предстоит выбрать наименьшую: старые преобразования нарушают вид законов электромагнетизма, а новые — законов механики. Но старые законы электромагнетизма дают хорошее и простое описание природы в любых экспериментах как при высоких, так и при низких скоростях, а законы механики в своей классической форме все же нарушаются при высоких скоростях. Поэтому мы выбираем новые преобразования, модифицируем с их помощью законы механики и очень довольны, обнаружив, что модифицированные законы прекрасно описывают более точные эксперименты.
Новые преобразования выглядят не очень привлекательно[256], ибо они сложней и работать с ними менее приятно. Для сохранения галилеевой относительности Ньютон считал, что длины, массы и время не зависят от наблюдателя и друг от друга. Он мог утверждать, что с помощью механических экспериментов нельзя обнаружить равномерное движение в «пространстве»[257]. Когда же Эйнштейн распространил это утверждение на «неудачные» эксперименты со светом, он обнаружил, что результаты измерений длины, времени, а следовательно, и массы у наблюдателей с различными скоростями будут разными. Мы не рассказываем, как работает логическая машина, но на нее можно вполне положиться, как и на обычную алгебру[258].
Мы будем называть их, как принято, преобразованиями Лоренца.
Применение преобразований Лоренца
Итак, примем новые усовершенствованные представления и посмотрим, как можно сравнить результаты измерений различных наблюдателей. Вернемся к наблюдателям ε и ε', которые снабжены совершенно одинаковыми метрами, часами и стандартными килограммовыми гирями. Наблюдатель ε' движется вместе со своей системой координат относительно наблюдателя ε со скоростью v, а ε движется относительно ε' назад, со скоростью —v.
Преобразования ε —> ε' и ε' —> ε полностью симметричный говорят только об одной и той же в обоих случаях относительной скорости v без каких-либо указаний на абсолютное движение и намека на то, кто из них «движется на самом деле».
Из этих преобразований вытекают результаты, которые необычны с точки зрения здравого смысла, но проявляются только при чрезвычайно больших скоростях. Наблюдатель, пролетающий мимо лаборатории на самолете или ракете, вполне может пользоваться преобразованиями Галилея. Он не обнаружил бы отклонений от правил сложения векторов и обычных законов движения механики Ньютона.
Скорость света с огромна:
с = 300000000 м/сек = 300 000 км/сек ~= 1 миллиард км/час.
В случае движения с обычными скоростями множитель v/c очень мал, а v2/c2 еще меньше. Множитель √(1 — (v2/c2)) для любых практических целей можно считать единицей, а запаздывание времени xv/c2 настолько незначительно, что практически мы имеем дело с преобразованиями Галилея.
Пусть теперь наблюдатель ε' движется относительно ε с колоссальной скоростью. В своей лаборатории каждый наблюдатель обнаружит одни и те же законы механики, а луч света будет распространяться с одной и той же скоростью в обеих лабораториях. Однако при скоростях 30 000, 60 000, 90 000 км/сек и еще больше наблюдатель ε увидел бы, что у проносящегося мимо него наблюдателя ε' творятся удивительные вещи. Наблюдатель ε воскликнул бы: «Вот чудак, у тебя же все приборы неправильные! Метр — короче моего, правильного, а часы отстают и за каждую секунду по моим точным часам они отсчитывают долю секунды». Между тем наблюдатель ε' не обнаружил бы в своей лаборатории никакого беспорядка и, взглянув на уносящегося ε и его лабораторию, закричал бы: «Сам чудак! У меня-то все в порядке, а посмотри, что творится у тебя! Метр короче… часы запаздывают…»
256
Эти преобразования могут показаться более разумными, если вы дите, что они представляют вращение пространственно-временных осей. См. стр. 636.
257
Когда опыт привел нас к вере в правильность первого и второго законов Ньютона, то на самом деле просто нам здорово повезло в том смысле, что мы очутились в лаборатории, которая представляет собой практически инерциальную систему. Если бы мы экспериментировали на пляшущем на волнах корабле, то вряд ли могли бы сформулировать столь простые законы.
258
Более подробно все это изложено во многих книгах. (Существует простое изложение теории относительности, например: