Поскольку следы коротки и слабо искривлены, радиус кривизны измерить очень точно не удается. Поэтому импульс налетающей частицы, а следовательно, ее масса определяются с точностью до 6 %. Другими словами, -
Macca = 12,7∙m0 ± 6 % = 12,7∙m0 ± 0,8∙m0 .
ПОСЛЕ СОУДАРЕНИЯ
разлетающиеся частицы имеют массы 8,9∙m0 и 4,3∙m0 и скорости 0,9936∙с и 0,9728∙с,
где m0 — масса покоя электрона, а с — скорость света. До соударения полная масса была равна 13,7∙m0 (включая массу мишени), после соударения она стала 13,2∙m0. В этом соударении масса сохраняется в пределах точности 6 %, подобно энергии, измеряемой теперь величиной mс2.
Смысл изменения массы
Существует простая физическая интерпретация изменений массы: добавочная масса является массой, соответствующей кинетической энергии тела. Проверим это с помощью алгебры, воспользовавшись разложением радикала для достаточно малых скоростей в ряд:
= m0 + (1/2)∙m0∙(v2/c2) + Пренебрежимо малые величины при малых скоростях
= Масса покоя + Eкин/с2
=Масса покоя + Macca, соответствующая кинетической энергии.
Максимальная скорость с
По мере роста скорости тела и приближения ее к скорости света ускорять тело становится все труднее и труднее — масса его приближается к бесконечности. Экспериментаторы, работающие с линейными ускорителями (которые разгоняют электрон по прямой), обнаруживают, что при высоких энергиях их «подопечные» приближаются к скорости света, но никогда не превосходят ее. При каждом последующем толчке электрон приобретает большую энергию (и, следовательно, большую массу), но становится лишь чуть-чуть быстрее (поэтому ускоряющие промежутки можно равномерно располагать вдоль пучка, что будет неким упрощением конструкции).
Рост массы до бесконечности при приближении к скорости света означает бесконечное «затруднение ускоряться». Наши попытки заставить тело двигаться быстрее остаются тщетными до тех пор, пока тело не достигнет очень больших скоростей, где приходится «карабкаться» по все более и более крутому склону к отвесной стене, когда скорость подходит к скорости света. Поэтому не следует удивляться предсказанию теории относительности, что никакое тело не может двигаться быстрее скорости света, ибо при попытке ускорить его до этой скорости мы сталкиваемся со все большей и большей массой и, следовательно, получаем все меньший отклик на действие ускоряющей силы.
Релятивистское сложение скоростей
Двигаться быстрее света? Ну, конечно, это возможно: возьмите на ракету, летящую со скоростью 3/4 с, ружье и выстрелите вперед пулей, летящей со скоростью 1/2 с относительно ружья. Тогда скорость пули будет 1/2 с + 3/4 с = 11/4 с. Но ведь это галилеево сложение скоростей, а нам нужно найти релятивистское правило!
Фиг. 160. Измерение скорости.
Пусть наблюдатель ε в своей лаборатории видит тело, движущееся со скоростью u вдоль оси X. Какова скорость этого тела по мнению наблюдателя е'?
По измерениям ε' скорость u = Δx/Δt, а по измерениям ε' скорость u' = Δx'/Δt', и простая алгебра с использованием преобразований Лоренца дает
вместо галилеева u' = (u — v). Обратное преобразование дает
Для обычных скоростей скобка [] в знаменателе практически равна единице и формула сложения скоростей сводится к галилеевой. Проверьте это для пули, выпущенной из ружья в вагоне обычного экспресса. Едущий в вагоне наблюдатель ε' видит, что из ружья вылетает пуля со скоростью u', а наблюдатель ε, сидящий у полотна, видит, что пуля движется со скоростью u. Экспресс же, по его наблюдениям, проносится мимо со скоростью v. Тогда u = (u' + v)/[1].