Выбрать главу

Формула Галилея дает:

СКОРОСТЬ ПУЛИ ОТНОСИТЕЛЬНО ЗЕМЛИ = СКОРОСТЬ ПУЛИ ОТНОСИТЕЛЬНО ПОЕЗДА + СКОРОСТЬ ПОЕЗДА ОТНОСИТЕЛЬНО ЗЕМЛИ.

Фиг. 161. Сложение обычных скоростей.

Обратимся снова к опыту с ружьем на ракете, летящей со скоростью 3/4 с, из которого со скоростью 1/2 с вперед вылетает пуля. Сидящий в ракете наблюдатель ε' видит, что пуля вылетает со скоростью u' = (1/2)∙с, а находящийся на земле наблюдатель ε видит, что ε' и ракета несутся со скоростью 3/4 с; от ε' он знает, с какой скоростью из ружья вылетает пуля. Воспользовавшись затем релятивистской формулой, ε предсказываем скорость пули:

т. е. немного меньше с.

Предпримем еще одну попытку превысить скорость света с. Запустим две ракеты навстречу друг другу со скоростями 3/4 с и 1/2 с. Стоящий на земле наблюдатель ε видит своего коллегу ε' на ракете, летящей со скоростью v = (3/4)∙с и другую ракету, летящую со скоростью u = —(1/2)∙с. Он думает, что ракеты должны сближаться с относительной скоростью 11/4 с. Однако сидящий на ракете наблюдатель ε' видит, что вторая ракета приближается к нему со скоростью

Их скорость сближения меньше с. Что бы мы ни делали, нельзя заставить материальное тело двигаться быстрее скорости света с точки зрения любого наблюдателя.

Фиг. 162. Сложение очень больших скоростей.

Фиг. 163. Две сближающиеся ракеты.

Скорость света

Для проверки нового правила сложения скоростей убедимся, что с точки зрения наблюдателей, движущихся с разными скоростями, оно дает одну и ту же скорость света. Возьмем световой сигнал, распространяющийся, согласно ε, со скоростью с. Наблюдатель ε', двигаясь со скоростью v относительно ε в том же направлении, видит, что световой сигнал распространяется со скоростью

Каждый наблюдатель получает одну и ту же скорость света с. (Удивляться здесь нечему, ибо преобразования Лоренца на это и рассчитаны.) Такой результат, несомненно, объясняет нулевой результат опыта Майкельсона-Морли-Миллера.

Энергия

Видоизменим теперь точку зрения Ньютона, чтобы привести ее в соответствие с теорией относительности. Определим импульс как mv, где m — масса движущегося тела: m = m0/√(1 — (v2/с2)). Определим силу F как Δ(mv)/Δt, а переход потенциальной энергии в кинетическую — как работу F∙Δs. Скомбинируем их и вычислим кинетическую энергию массы m, движущейся со скоростью v. Приведем только результат:

Мы приписываем телу постоянный запас «энергии покоя», m0c2, заключенный, по-видимому, в атомных силовых полях. Добавляем ее к Екин и получаем полную энергию тела Е, равную m0c2 +(mc2 m0c2) = m0c2, т. е. Е = mc2.

Фиг. 164. Измерение скорости одного и того же луча света.

Это справедливо независимо от скорости, но следует помнить, что m изменяется со скоростью. При малых скоростях mc2 сводится к

(Энергия покоя m0c2) + (Екин = 1/2 mv2)

(См. выше рассуждения о разложении бинома).

Короткий и прямой вывод соотношения Е = mc2 дан ниже.

Вывод соотношения Е = mc2

Этот краткий вывод, данный Эйнштейном, основан на экспериментальном факте, который состоял в том, что при поглощении веществом излучения с энергией Е дж ему сообщается импульс Е/с кг∙м/сек. Опыты показывают, что давление излучения на поглощающую стенку равно количеству энергии в единице объема излучения. Допустим, что пучок площадью А падает по нормали на поглощающую поверхность. За время Δt нa поглотитель падает пучок длины с∙Δt. Тогда импульс, сообщенный за время Δt, равен