г — преобразования Лоренца поворачивают оси одной координатной системы пространства-времени по отношению к другой (хотя и на пренебрежимо малый угол, за исключением случаев, когда относительная скорость ε и ε' приближается к c).
Спроектируем точку на оси х и у (фиг. 470).
Повернем теперь оси на угол A (вокруг оси z). По отношению к новым осям координаты точки будут x', у'. Обозначим символом s наклон новой оси х, так что s = tg А. Теперь видно, что
x' = (x + b)∙cos A = (x + y∙tg A)∙cos A =
= (x + sy)/sec A = (x + sy)/√(1 + tg2 A),
т. е.
x' = (x + sy)/√(1 + s2)
Подобным же образом
y' = (y — sx)/√(1 + s2)
Преобразования при простом вращении осей показывают, что квадратный корень играет здесь ту же роль, что и в преобразованиях Лоренца. Действительно, мы получим лоренцеву форму преобразований, если вместо у возьмем t, умноженное на постоянную с и на i [квадратный корень из (—1)], а вместо наклона s возьмем i(v/c). Если y = ict, y' = ict', a s = iv/c, то преобразования вращения превратятся в преобразования Лоренца. Проверьте это. Отсюда видно, что преобразования Лоренца можно рассматривать как расслоение пространства-времени линиями разного наклона для разных наблюдателей.
Инвариантный «интервал» между двумя событиями
Определим «интервал» между двумя событиями (x1, t1) и (x2, t2) по теореме Пифагора:
R2 = (x1 — x2)2 + (ict1 — ict2)2
Затем можно записать выражение для «интервала» R' для другого наблюдателя, который в своих координатах связывает те же два события в точках (x'1, t'1) и (x'2, t'2). Воспользуемся преобразованиями Лоренца и выразим R' через координаты первого наблюдателя. Тогда мы обнаружим, что R' совпадает с R. Преобразования Лоренца оставляют «интервал» неизменным. Это и составляет утверждение теории относительности — измерения с всегда дают одну и ту же ее величину.
Роль скорости с иллюстрируется историей, предложенной Джоном А. Уилером. Допустим, что обитатели некоего острова проводят все свои измерения в прямоугольной системе координат, но расстояние по оси, идущей с севера на юг, они измеряют в километрах, а с запада на восток — в метрах. Затем неожиданный сдвиг магнитного поля Земли на угол А вынуждает их повернуть свои оси в новом направлении. Однако они по-прежнему продолжают мерить расстояния С'—Ю' в километрах, а 3'—В' в метрах. Попытавшись вычислить расстояние между двумя точками по теореме Пифагора R2 = (Δx)2 + (Δy)2, они обнаруживают, что в новых координатах R стало другим. Затем они открывают, что для обоих наборов осей значение R получается одним и тем же (которое к тому же полезно), если определить R2 = (Δx)2 + (1000∙Δy)2. Этот «таинственный» множитель 1000 соответствует c в релятивистском интервале. Вывод таков: с не столько таинственная предельная скорость, сколько множитель, связанный с единицами измерения, который говорит, что время и расстояние не отличаются в корне друг от друга, а образуют однородное множество, в котором и то и другое можно измерять метрами.
Существует ли система отсчета, связанная с неподвижным пространством?
Итак, мы построили специальную теорию относительности с ее новой геометрией и физикой пространства и времени, с ее часами и метрами (основными приборами физики), которые своими изменениями при переходе в новую систему открывают универсальный характер и постоянство скорости света — предел скорости движущихся тел — и выявляют единую форму физических законов для всех наблюдателей, движущихся друг относительно друга с постоянной скоростью, тем самым безвозвратно сокрушая наши надежды на всякое абсолютное движение и системы отсчета, связанные с неподвижным пространством, вернее, объявляя вопрос о существовании таких систем лишенным всякого смысла.