Шарик А прикреплен к одному концу плексигласового коромысла. Слабая (но хорошая) стальная пружина уравновешивает вес шарика и позволяет измерить любую дополнительно действующую на шарик силу. У второго конца коромысла укреплена длинная стрелка, против которой расположена вертикальная шкала. Шарик В крепится отдельно на подвижном изолирующем стержне над шариком А. От стержня, на котором крепится шарик В, вниз отходит стержень из плексигласа с делениями, позволяющий измерить расстояние между шариками. Каждый шарик был заряжен с помощью электрофора. Шарик В относили на большое расстояние и устанавливали стрелку, связанную с шариком А, против нуля шкалы. Затем шарик В располагали над А на определенном расстоянии по вертикали и отсчитывали показание стрелки, по которому можно оценить силу отталкивания. (Шкала разбита на произвольные деления, каждое примерно по 1 см. Чтобы оценить жесткость пружины — нам она здесь не нужна, — на шарик А помещали груз 1 г; при этом отсчет по шкале равен 49.) Ниже в таблице приведена для примера запись результатов измерений («бесконечность» означает, что шарик В убран).
а) Перепишите таблицу, добавив столбец ДЛЯ ПРОВЕРКИ ЗАКОНА КУЛОНА. Проделайте вычисления с целью проверить обратную пропорциональность квадрату расстояния.
б) Предполагая, что значение (которое мы измерим позже) равно 9,0∙109, и считая оба заряда равными, оцените их величину в кулонах. (Обратите внимание на то, что сила должна быть выражена в ньютонах.)
Фиг. 69. Проверка закона обратной пропорциональности квадрату расстояния.
Электрические поля
Мы представляем себе, что с каждым зарядом связано электрическое поле, подобное в известном смысле полю тяготения. Напряженность электрического поля в любой точке определяют как силу, действующую на пробный кулон, помещенный в эту точку. Принимая во внимание, что 1 кулон — огромный заряд, сформулируем это определение более реалистически следующим образом:
НАПРЯЖЕННОСТЬ ЭЛЕКТРИЧЕСКОГО ПОЛЯ = СИЛА, ДЕЙСТВУЮЩАЯ НА МАЛЫЙ ПРОБНЫЙ ЗАРЯД / ВЕЛИЧИНА ПРОБНОГО ЗАРЯДА
Мы получаем силу, действующую на единичный заряд, в ньютон/кулон[51].
На фиг. 70 показаны «демоны», занятые экспериментальным исследованием напряженности поля тяготения и электрического поля.
Фиг. 70. Измерение напряженности поля.
а и б — измерение напряженности гравитационного поля Земли; сила притяжения эталона килограмма измеряется в ньютонах; в — измерение напряженности электрического поля; г — «измеритель напряженности электрического поля».
Чтобы избежать искажения измеряемого поля и не иметь дела при измерениях с огромными силами, пробный заряд должен быть значительно меньше, чем 1 кулон. Тогда мы должны будем измерять силу, действующую, скажем, на заряд в 1 миллиардную кулона, с помощью пружинных весов, проградуированных в миллиардных долях ньютона. При этом мы определим напряженность поля в ньютон/кулон.
Напряженность поля вокруг малого изолированного заряда изменяется обратно пропорционально квадрату расстояния.
НАПРЯЖЕННОСТЬ ПОЛЯ = СИЛА, ДЕЙСТВУЮЩАЯ НА ПРОБНЫЙ ЗАРЯД / ПРОБНЫЙ ЗАРЯД =
То же самое справедливо для изолированного заряженного шара. Напряженность поля — вектор. Кроме величины, поле характеризуется направлением силы, действующей на положительный пробный заряд. Можно начертить карту направлений электрического поля с помощью воздушного шарика, реального или воображаемого, несущего малый пробный заряд. На фиг. 71 показаны два громадных металлических шара, заряженных положительно и отрицательно. Заряженный воздушный шарик будет перемещаться от одного шара к другому вдоль любой из траекторий, показанных пунктирными линиями. Они называются силовыми линиями. Эти линии указывают направление поля, т. е. направление результирующей силы, действующей на пробный заряд.
Фиг. 71. Определение конфигурации электрического поля.
Путем геометрического построения находят последовательно в разных точках направление результирующей силы, приложенной к пробному заряду.
51
Если заряды находятся на металлических предметах, то введение пробного заряда в пространство между ними привело бы к смещению первоначальных зарядов и тем самым к изменению поля, которое мы пытаемся измерить. Чем меньше пробный заряд, тем меньше это изменение поля. Поэтому мы берем все меньший и меньший заряд и мысленно совершаем математическую операцию перехода к пределу. ПРЕДЕЛ отношения СИЛА/ЗАРЯД мы называем НАПРЯЖЕННОСТЬЮ ПОЛЯ. Предел в математическом смысле и в этом случае представляет собой идеальную меру физической величины, как было указано в