m1v1 + m2v2 = 0
Закон сохранения импульса
Произведение массы тела на его скорость называется импульсом тела (другое название – количество движения). Так как скорость – вектор, то и импульс является векторной величиной. Разумеется, направление импульса совпадает с направлением скорости движения тела.
При помощи нового понятия закон Ньютона F = ma может быть выражен иначе. Так как a = (v2 − v1)/t, то F = (mv2 − mv1)/t, или Ft = mv2 − mv1. Произведение силы на время ее действия равно изменению импульса тела.
Вернемся к явлению отдачи.
Наш результат рассмотрения отдачи орудия можно теперь сформулировать короче: сумма импульсов орудия и снаряда после выстрела остается равной нулю. Очевидно, такой же она была и до выстрела, когда орудие и снаряд находились в состоянии покоя.
Скорости, входящие в уравнение m1v1 + m2v2 = 0, – это скорости непосредственно после выстрела. При дальнейшем движении снаряда и орудия на них начнут действовать силы тяжести, сопротивление воздуха, а на пушку дополнительно – и сила трения о землю. Вот если бы выстрел был произведен в безвоздушном пространстве из орудия, висящего в пустоте, тогда движение со скоростями v1 и v2 продолжалось бы сколь угодно долго. Орудие двигалось бы в одну сторону, а снаряд – в противоположную.
В артиллерийской практике в настоящее время широко применяются орудия, установленные на платформе и стреляющие на ходу. Как же изменить выведенное уравнение, чтобы оно было применимо к выстрелу из такого орудия? Мы можем записать:
m1u1 + m2u2 = 0,
где u1 и u2 – скорости снаряда и орудия по отношению к движущейся платформе. Если скорость платформы V, то скорости орудия и снаряда по отношению к покоящемуся наблюдателю будут v1 = u1 + V и v2 = u2 + V.
Подставляя значения u1 и u2 в последнее уравнение, получим:
(m1 + m2)V = m1v1 + m2v2.
В правой части равенства у нас стоит сумма импульсов снаряда и орудия после выстрела. А в левой? До выстрела орудие и снаряд с общей массой m1 + m2 движутся вместе со скоростью V. Значит, и в левой части равенства стоит общий импульс снаряда и орудия, но до выстрела.
Мы доказали очень важный закон природы, который называется законом сохранения импульса. Доказали мы его для двух тел, но можно легко показать, что такой же результат имеет место и для любого числа тел. Каково же содержание закона? Закон сохранения импульса говорит, что сумма импульсов нескольких тел, находящихся во взаимодействии, не меняется в результате этого взаимодействия.
Ясно, что закон сохранения импульса будет справедлив лишь тогда, когда на ту группу тел, которую мы рассматриваем, не действуют силы со стороны. Такая группа тел называется в физике замкнутой.
Ружье и пуля во время выстрела ведут себя, как замкнутая группа двух тел, несмотря на то, что испытывают действие силы земного притяжения. Вес пули мал по сравнению с силой пороховых газов и явление отдачи произойдет по одним и тем же законам, независимо от того, где будет произведен выстрел, – на Земле или в ракете, летящей в межпланетном пространстве.
Закон сохранения импульса позволяет легко решать различные задачи, относящиеся к столкновениям тел. Попробуем одним глиняным шариком попасть в другой – они слипнутся и будут продолжать движение вместе; если выстрелить из ружья в деревянный шар, он покатится вместе с застрявшей в нем пулей; стоявшая вагонетка покатится, если человек с разбегу прыгнет в нее. Все приведенные примеры с точки зрения физика весьма похожи. Правило, связывающее скорости тел при столкновениях такого типа, сразу же получается из закона сохранения импульса.
Импульсы тел до встречи были m1v1 и m2v2, после столкновения тела объединились, их общая масса равна m1 + m2. Обозначив скорость объединившихся тел через V, получим: