Выбрать главу

Величина d называется плечом силы. Новая формула M = Fd читается так: момент силы равен произведению силы на ее плечо.

Если точку приложения силы перемещать вдоль направления силы, то плечо d, а вместе с ним и момент силы не будут меняться. Значит, безразлично, где именно на линии силы лежит точка приложения.

При помощи нового понятия формула для работы запишется короче:

A = Mφ,

т.е. работа равняется произведению момента силы на угол поворота.

Пусть на тело действуют две силы с моментами M1 и M2. При повороте тела на угол φ будет совершена работа M1φ + M2φ = (M1 + M2)φ. Эта краткая запись показывает, что две силы с моментами M1 и M2 вращают тело так, как это делала бы одна сила с моментом M, равным сумме M1 + M2. Моменты сил могут как помогать, так и мешать друг другу. Если моменты M1 и M2 стремятся повернуть тело в одну и ту же сторону, то мы должны считать их величинами, имеющими одинаковый алгебраический знак. Напротив, моменты сил, поворачивающие тело в разные стороны, имеют разные знаки.

Как мы знаем, работа всех сил, действующих на тело, идет на изменение кинетической энергии.

Вращение тела замедлилось или ускорилось – значит, изменилась его кинетическая энергия. Это может произойти лишь в том случае, если суммарный момент сил не равен нулю.

А если суммарный момент равен нулю? Ответ ясен – кинетическая энергия не изменяется, следовательно, тело или вращается равномерно по инерции, или покоится.

Итак, равновесие способного вращаться тела требует уравновешивания действующих на него моментов сил. Если действуют две силы, равновесие требует равенства

M1 + M2 = 0.

Пока нас интересовали такие задачи, в которых тело можно было рассматривать как точку, условия равновесия были проще: чтобы тело покоилось или двигалось равномерно, говорил закон Ньютона для таких задач, надо, чтобы результирующая сила равнялась нулю; силы, действующие вверх, должны уравновеситься силами, направленными вниз; сила вправо должна компенсироваться силой влево.

Этот закон действителен и для нашего случая. Если маховое колесо находится в покое, то действующие на него силы уравновешиваются реакцией оси, на которую насажено колесо.

Но этих необходимых условий становится недостаточно. Кроме уравновешивания сил требуется еще уравновешивание моментов сил. Уравновешивание моментов является вторым необходимым условием покоя или равномерного вращения твердого тела.

Моменты сил, если их много, без труда разбиваются на две группы: одни стремятся вращать тело вправо, другие – влево. Эти-то моменты и должны компенсироваться.

Рычаг

Может ли человек удержать на весу 100 тонн, можно ли рукой расплющить железо, может ли ребенок оказать противодействие силачу? Да, могут.

Предложите сильному человеку повернуть влево маховое колесо, ухватившись за спицу рукой у самой оси. Момент силы в данном случае будет невелик: сила большая, но плечо мало. Если ребенок будет тянуть колесо в обратную сторону, ухватившись за спицу у обода, то момент силы может оказаться и большим: сила мала, зато плечо велико. Условием равновесия будет

M1 = M2 или F1d1 = F2d2.

Используя закон моментов, можно придать человеку сказочную силу.

Наиболее ярким примером служит действие рычагов.

Вы хотите поднять ломом громадный камень. Эта задача окажется вам под силу, хотя вес камня – несколько тонн. Лом положен на опору и представляет собой твердое тело нашей задачи. Точка опоры есть центр вращения. На тело действуют два момента сил: мешающий – от веса камня и подталкивающий – от руки. Если индекс 1 отнести к мускульной силе, а индекс 2 – к тяжести камня, то возможность поднять камень выразится кратко: M1 должно быть больше M2.

Поддерживать камень на весу можно при условии

M1 = M2, т.е. F1d1 = F2d2.

Если малое плечо – от опоры до камня – в 15 раз меньше большого плеча – от опоры до руки, – то камень весом в 1 тонну будет удерживать в приподнятом состоянии человек, действующий всем своим весом на длинный конец рычага.