Опыты не оставляют сомнения в том, что оба явления присутствуют одновременно и оба они должны быть приняты во внимание при создании теории.
Термоэлектродвижущие силы невелики — порядка единиц милливольт при разностях температур в 100 градусов. Но такие напряжения измеряются легко. Поэтому термоэлектродвижущий эффект используют для измерения температур. Ведь в расплав металла стеклянный термометр не сунешь. Вот в таких случаях термопара (так называется термоэлемент, используемый для измерения температуры) и оказывается великолепным инструментом. Впрочем, у термопары еще много достоинств. Сколь существенна возможность измерения температуры на больших расстояниях! А чувствительность! Электрические измерения очень точны, и оказывается, что с помощью термопары можно мерить разности температур в миллионные доли градуса.
Эта высокая чувствительность позволяет применять термоэлементы для измерения тепловых потоков, приходящих со стороны отдаленных объектов. Читатель может прикинуть сам возможности термоэлемента. Достаточно сказать, что десятые доли эрга в секунду не являются для него пределом.
Так же как и аккумуляторы, термоэлементы иногда собирают в батареи. Если нужна не очень большая энергия, то такая батарея может служить генератором энергии, который находит себе применение для радиосвязи.
Многие вещества — и элементы, и химические соединения — заполняют по значениям своей проводимости широчайший интервал между проводниками и изоляторами. О существовании таких тел было известно очень давно. Но каких-нибудь двадцать лет назад вряд ли кто-либо предвидел, что физика полупроводников породит отрасль промышленности, важность которой трудно переоценить. Нет полупроводников — значит нет современных электронно-вычислительных машин, телевизоров и магнитофонов. Без полупроводников немыслима современная радиотехника.
Проводимость изоляторов лежит между 10-8 и 10-18 Ом-1∙м-1, проводимость металлов имеет значения между 102 и 104 этих же единиц. Удельная проводимость полупроводников лежит между этими двумя интервалами. Однако мы узнаем, что имеем дело с полупроводником, не только по величине его сопротивления.
Так же как и в случае металлов, при протекании тока в полупроводниках мы не наблюдаем каких бы то ни было химических изменений. Значит ионы этих веществ, образующие каркас кристаллической решетки, не перемещаются под действием поля. Следовательно, как и в металлах, мы должны приписать проводимость движению электронов.
Хотя это обстоятельство вроде бы самоочевидно, но на заре изучения полупроводников физики решили на всякий случай проверить, какие заряды являются переносчиками тока. В случав твердых тел эту проверку можно сделать при помощи эффекта Холла.
В следующей главе я напомню вам, что под действием магнитного поля положительные и отрицательные частицы отклоняются, и притом в разные стороны. Если твердое тело, внутри которого движутся заряды, изготовить в виде полоски и поместить в соответствующим образом направленное магнитное поле, то между краями пластинки возникнет напряжение. Схема опыта показана на рис. 2.8.
Каково же было удивление физиков, которые выяснили, что приходится встречаться с телами, которые при исследовании по показанной схеме ведут себя иногда так, как будто бы по проводу движутся положительные частицы, а в других случаях — так, как если бы переносчики электричества имели отрицательный знак. Дать название этому поведению нетрудно. В первом случае будем говорить о позитивной проводимости (p-тип), во втором — о негативной (n-тип). Но дело не в названии, а в объяснении существа дела. Ведь нет никакого сомнения в том, что внутри полупроводника движутся электроны. Как же выйти из противоречия? Как объяснить позитивную проводимость?