Выбрать главу

Электрические колебания продолжались бы до бесконечности, если бы не неизбежное сопротивление току. Из-за него при каждом периоде энергия будет теряться и колебания, уменьшаясь по амплитуде, быстро затухнут.

Бросающаяся в глаза аналогия с колебаниями груза на пружине позволяет нам обойтись без алгебраического рассмотрения процесса и сообразить, каков будет период колебаний в таком контуре. (Читателю надо освежить в памяти соответствующие страницы первой книги.) Действительно, достаточно очевидно, что электрическая энергия конденсатора эквивалентна потенциальной энергии сжатой пружины, а магнитная энергия катушки — кинетической энергии грузика.

Сопоставляя аналогичные величины, мы «выводим» формулу периода электрических колебаний, происходящих в контуре: 1/2 q2/C — аналог 1/2 k∙х2; 1/2 LI2 — аналог 1/2 mv2k — аналог 1/С; L — аналог m. Значит, частота колебания v = 1/2π∙√(LC), поскольку для механического колебания соответствующая формула имеет вид:

Теперь попробуем угадать ход мыслей Герца, который поставил перед собой задачу, не выходя за пределы лаборатории, доказать существование электромагнитных волн, распространяющихся со скоростью 300 000 км/с. Итак, требуется получить электромагнитную волну длиной порядка 10 м. Если Максвелл прав, то для этого нужно, чтобы электрический и магнитный векторы колебались бы с частотой 3∙108 герц… простите — обратных секунд. Ведь в то время Герц не знал, что его имя будет увековечено названием единицы частоты.

С чего же начать? Прежде всего, поскольку колебания затухающие, надо создать устройство, которое возобновляло бы процесс после того, как ток прекратится. Это сделать нетрудно. Схема показана на рис. 5.6.

На первичную обмотку трансформатора Т подается переменное напряжение. Как только оно достигнет пробивного напряжения между шариками, подключенными ко вторичной обмотке, тут же проскочит искра. Она-то и замыкает колебательный контур К, играя роль ключа, и в контуре с более или менее высокой частотой пробежит десяток колебаний с уменьшающейся амплитудой.

Но частота должна быть высокой. Что для этого надо сделать? Уменьшить самоиндукцию и уменьшить емкость. Как? Заменяем катушку прямым проводом, а пластины конденсатора начинаем раздвигать и уменьшать их площадь. Во что же вырождается колебательный контур? Да от него просто ничего не остается: два стержня, заканчивающиеся шариками, между которыми проскакивает искра.

Так Герц и пришел к идее своего вибратора или осциллятора, который может служить как источником, так и приемником электромагнитных волн.

Предсказать заранее, чему будут равны индуктивность и емкость такого своеобразного «контура», от которого остались в полном смысле слова рожки да ножки, Герцу было трудно. Индуктивность и емкость вибратора не сосредоточены в одном месте цепи, а распределены вдоль стержней. Теория нужна другая.

Но обсуждение этого нового подхода к электрическим цепям, в которых протекают токи очень высокой частоты, завело бы нас слишком далеко. Читатель может поверить нам на слово, что в вибраторе Герца действительно возникают колебания тока высокой частоты.

«Передатчик» и «приемник» волн, использованные Герцем, были практически одинаковы. В «передатчике» колебания возбуждались искрой, которая периодически проскакивала между шариками в соответствии с работой трансформатора, подводившего к вибратору напряжение. Искровой промежуток можно было менять микрометрическим винтом. Приемниками служили либо прямоугольный виток провода, прерванный искровым промежутком, либо два стерженька, которые можно было сближать по желанию до расстояний в доли миллиметра.

В своей первой работе, опубликованной в 1885 г., Герц показывает, что описанным выше способом можно получать колебания очень высокой частоты, что эти колебания действительно создают в окружающем пространстве переменное поле, о наличии которого можно судить по искре, проскакивающей в «приемнике». Принимающий вибратор Герц назвал резонатором. Ему сразу же был очевиден тот принцип обнаружения электромагнитного поля, который лежит в основе современной радиотехники.