Очень важно знать общее правило, которое справедливо для любых систем. С помощью написанного закона ЭВМ вычислит за секунды электрическое поле, создаваемое самой сложной системой заряженных тел.
Мы же удовлетворимся скромной задачей и выведем (демонстрируя на этом элементарном случае приемы теоретической физики) практически важную формулу для емкости конденсатора.
Сначала определим это распространенное понятие. Емкостью конденсатора называется отношение заряда, который. скапливается на его пластинах, к напряжению между обкладками, т. е.
С = q/U.
В случае конденсатора силовые линии не идут в стороны, они выходят из положительной пластины и входят в отрицательную. Если пренебречь искажением поля на краях конденсатора, то поток можно записать как произведение E∙S. Общий закон позволяет записать такое равенство:
E∙S = 4π∙K∙q
т. е. напряженность поля между обкладками v
Е = 4π∙K∙(q/S)
С другой стороны, напряженность поля конденсатора может быть записана как
E = U/d.
Приравнивая эти два выражения, мы получаем формулу для емкости конденсатора:
C = S/(4π∙K∙d)
Технические конденсаторы представляют собой металлические полосы, которые прижаты к слюде или парафинированной бумаге. Эти вещества принадлежат к изоляторам. Какую же роль играет введение диэлектрика между обкладками конденсатора? Опыт показывает, что емкость конденсатора С связана с емкостью конденсатора без прокладки С0 формулой С = ε∙С0.
Величина ε носит название диэлектрической проницаемости. Для воздуха, слюды, воды и сегнетовой соли значения ε равны соответственно 1, примерно 6, 81 и 9000.
Закон Ома и закон Джоуля-Ленца связывают между собой энергию, силу тока, напряжение и сопротивление. Можно сказать, что напряжение равно произведению силы тока на сопротивление. Можно сказать и так: силой тока называется напряжение, поделенное на сопротивление. Но оба эти определения, которые можно встретить в учебниках, страдают тем недостатком, что они удобны лишь в том случав, если справедлив закон Ома. А, как было сказано, этот закон верен не всегда. Поэтому лучше всего поступить так, как мы это сделали, а именно считать, что производной величиной является сопротивление проводника, которое определяется как отношение напряжения на концах проводника к силе тока, который через него идет.
Поскольку энергию электрического тока можно измерять, исходя из закона сохранения энергии — по тепловым и механическим действиям тока, то ясна целесообразность определения силы тока или напряжения как величины, производной от энергии. Наиболее естественно определить силу тока с помощью явления электролиза, а напряжение на концах участка цепи — как частное от деления выделенной энергии на количество электричества.
Однако читатель должен ясно представить себе, что эта система определений не является единственной. Вместо электролиза в основу определения силы тока может быть положено и любое другое его действие: скажем, действие тока на магнитную стрелку или на другой ток.
Нет в принципе ничего порочного и в таком пути: выбирается некоторый стандартный источник тока, а напряжение любого другого источника определяется числом эквивалентных стандартных элементов. Это не выдумка. Такое предложение было, а стандартный источник носит название элемента Вестона.
Еще один вариант: систему определений и единиц измерения можно строить, выбрав некоторое эталонное сопротивление, и опять-таки измерять все другие сопротивления, выяснив, сколько стандартных элементов подменяют данный проводник. В свое время в качестве такой единицы сопротивления использовался столбик ртути заданных длины и сечения.
Полезно усвоить, что очередность введения физических понятий является делом произвола. Содержание законов природы, разумеется, от этого не изменяется.
До сих пор у нас шла речь о тех электрических явлениях, которые связаны с постоянным электрическим током. Даже оставаясь внутри этой группы явлений, имеется возможность построить различные системы определений понятий и соответственно различные системы единиц измерения. На самом деле наш выбор еще шире, ибо электрические явления вовсе не сводятся к постоянному электрическому току.