Что же касается коротких длин волн, то возможность дальнего радиоприема на этих волнах обязана наличию над землей ионосферы. Солнечные лучи обладают способностью разрушать молекулы воздуха в верхних областях атмосферы. Молекулы превращаются в ионы и на расстояниях 100–300 км от Земли образуют несколько заряженных слоев. Так что для коротких длин волн пространство, в котором движется волна, — это слой диэлектрика, зажатого между двумя проводящими поверхностями.
Поскольку равнинная и лесистая поверхности не являются хорошими проводниками для коротких волн, то они не способны их удержать. Короткие волны отправляются в свободное путешествие, но натыкаются на ионосферу, которая отражает их, как поверхность металла.
Ионизация ионосферы неоднородна, и, конечно, различна днем и ночью. Поэтому пути коротких радиоволн могут быть самыми различными. Они могут добраться до вашего радиоприемника и после многократных отражений Землей и ионосферой. Судьба короткой волны зависит от того, под каким углом попадет она на ионосферный слой. Если этот угол близок к прямому, то отражения не произойдет и волна уйдет в мировое пространство. Но чаще имеет место полное внутреннее отражение и волна возвращается на Землю.
Для ультракоротких волн ионосфера прозрачна. Поэтому на этих длинах волн возможен радиоприем в пределах прямой видимости или с помощью спутников. Направляя волну на спутник, мы можем ловить отраженные от него сигналы на огромных расстояниях.
Спутники открыли новую эпоху в технике радиосвязи, обеспечив возможность радиоприема и телевизионного приема на ультракоротких — волнах.
Интересные возможности предоставляет передача на сантиметровых, миллиметровых и субмиллиметровых волнах. Волны этой длины могут поглощаться атмосферой. Но, оказывается, имеются «окна», и, подобрав нужным образом длину волны, можно использовать волны, залезающие в оптический диапазон. Ну, а достоинства этих волн нам известны: в малый волновой интервал можно «вложить» огромное число неперекрывающихся передач.
Принципы радиолокации достаточно просты. Посылаем сигнал, он отражается от интересующего нас объекта и возвращается обратно. Если объект находится на расстоянии 150 м, то сигнал возвратится через 1 мкс, если на расстоянии 150 км, то через 1 мс. Направление, в котором посылается сигнал, является направлением линии, на которой находился самолет, ракета или автомобиль в тот момент, когда его встретил радиолуч.
Понятно, что радиоволна должна быть остронаправленной, угол раствора, в котором сосредотачивается основная часть мощности луча, должен быть порядка одного градуса.
Принцип действительно несложен, но техника далеко не проста. Начнем с того, что высокие требования предъявляются к генератору. В метровом и дециметровом диапазоне (более длинные волны явно не годятся) применяют ламповые генераторы, в сантиметровом диапазоне — клистроны и магнетроны.
Наиболее естественным представляется импульсный метод работы. В пространство периодически посылаются кратковременные импульсы. Длительность импульса в современных радиолокационных станциях лежит в пределах от 0,1 до 10 мкс. Частота повторения импульсов должна быть выбрана так, чтобы отраженный сигнал успел придти во время паузы.
Максимальная дальность, на которой можно обнаружить самолет и ракету, ограничена лишь условием прямой видимости. Читателю несомненно известно, что современные радиолокаторы способны принять сигналы, отраженные от любых планет нашей Солнечной системы. Разумеется, при этом должны использоваться волны, беспрепятственно проходящие через ионосферу. Удачно, что укорочение длины волны и непосредственно влияет на увеличение дальности локационного видения, поскольку она пропорциональна не только энергии посланного импульса, но и частоте излучения.
На экране осциллографа (электронно-лучевой трубки) можно видеть всплески от посланного и отраженного импульсов. Если самолет приближается, то отраженный сигнал будет сдвигаться в сторону посланного.
Радиолокаторы не обязательно должны работать в импульсном режиме. Предположим, самолет движется в сторону антенны со скоростью v. От него непрерывно отражается радиолуч. Эффект Допплера приводит к тому, что частота принимаемой волны будет связана с частотой посланной волны уравнением: