Но если ядро урана делится на две примерно равные половинки, то ядра продуктов деления будут неизбежно содержать «лишнее» число нейтронов. Они будут выбрасывать нейтроны. А нейтроны и играют роль «спичек».
Становится ясной возможность цепной реакции. Первый расчет этого явления был дан в 1939 г. Драматический ход событий — пуск первого ядерного реактора, создание атомной бомбы и взрыв ее в Хиросиме — изложен во всех деталях в десятках книг. У нас нет места для описания этих событий, и мы изложим современное состояние вопроса!
Нам надо пояснить, во-первых, в чем состоит ядерная цепная реакция, во-вторых, как ее сделать управляемой и, в-третьих, в каком случае она приводит к взрыву.
На рис. 5.6 показана схема одной из важнейших реакций этого типа: деление ядра урана-235.
За первым нейтроном дело не встанет — он найдется в атмосфере. Но при желании иметь более действенную «спичку» можно воспользоваться ничтожным количеством смеси радия с бериллием.
Попадая в ядро урана-235, которое состоит из 92 протонов и 143 нейтронов, плотно упакованных в сфере радиусом около 10-12 см, нейтрон проникает в это ядро, образуя изотоп уран-236. Пришелец деформирует ядро. Через промежуток времени порядка 10-14 с две половинки ядра удерживаются лишь маленьким мостиком. Еще такой же маленький промежуток времени — и ядро делится на две части. Одновременно оба образовавшихся осколка выбрасывают из себя два-три (в среднем 2,56) нейтрона. Осколки разлетаются с колоссальной кинетической энергией. Один грамм урана-235 дает столько же энергии, сколько 2,5 т угля, иными словами, 22 000 кВт∙ч. Через 10-12 с ядра, образовавшиеся после деления, более или менее успокаиваются, излучив при этом восемь фотонов гамма-лучей. Возникшие ядра радиоактивны. В зависимости от того, какие осколки образовались, дальнейший процесс распада может продолжаться от секунд до многих лет с испусканием гамма-лучей и выбрасыванием электронов..
Рис. 5.7 показывает, что чаще всего ядро урана-235 делится на два неравных осколка.
Как видно из кривой, максимальное число делений приводит к образованию ядер с массовыми числами 141 и 95.
Набор возникших радиоактивных осколков во всяком случае весьма велик. Самые различные нужды промышленности в искусственных радиоактивных элементах могут быть удовлетворены.
Если нейтроны, образующиеся при делении одного ядра, будут способны делить ядра других атомов урана, то цепная реакция осуществима.
Так как вещество чрезвычайно «дырчато» в отношении своего ядерного строения, то весьма значительна вероятность того, что образовавшиеся при делении какого-либо ядра нейтроны покинут вещество, не произведя деления других ядер. Кроме того, следует учесть, что не всякая встреча ядер с нейтронами приведет к делению. Цепная реакция будет развиваться в том случае, если в каждый последующий момент число нейтронов, находящихся внутри куска вещества, будет таким же или большим, чем в предшествовавший момент времени. Это условие физик формулирует следующим образом: коэффициент размножения нейтронов, равный произведению числа нейтронов на вероятность встреч нейтрона с ядром и на вероятность захвата нейтрона ядром не должен быть меньше единицы.
Поэтому чистое атомное горючее имеет критическую массу. Если эта масса меньше критической, то можно спокойно (ну, скажем лучше, более или менее спокойно) носить этот кусок ядерного горючего в кармане. Тяжело не будет, так как критическая масса близка к килограмму.
Само собой разумеется, сколь важно знать величину критической массы. Первый расчет этой величины дал в 1939 г. Ф. Перрен, сын Жана Перрена. Этот расчет представляет сейчас лишь исторический интерес, ибо в то время еще не было известно, что данная реакция в природном уране невозможна, в каком бы количестве мы его ни взяли. Но понадобилось совсем немного времени, чтобы картина стала ясной. Цепная реакция в природном уране не идет из-за того, что нейтроны, получающиеся при делении ядер урана-235, поглощаются за счет «резонансного» захвата атомами урана-238 с образованием урана-239, который в результате двух последовательных бета-распадов переходит в нептуний и плутоний. Критической массой обладают только уран-235 и плутоний. Те вещества, которые обладают критической массой, и являются ядерным горючим. Таковы были сведения, которыми физики обладали уже в начале 40-х годов.