На гидростанциях вырабатывается сейчас самая дешевая электроэнергия, но их строительство обходится в несколько раз дороже тепловых станций и сооружаются они более длительное время. На гидростанциях установлены гидрогенераторы, которые приводятся во вращение гидравлической турбиной. Гидрогенераторы — очень большие синхронные машины, чаще всего с вертикальным валом. Диаметр ротора такой машины в 7—10 раз превышает его длину и в крупнейших машинах превосходит 15 м. Это необходимо для того, чтобы машина могла устойчиво работать при изменениях скорости гидравлической' турбины, приводящей ее во вращение. Ротор гидрогенератора имеет большое число явно выраженных полюсов. Так, генераторы Днепровской ГЭС имеют 72 полюса. Для питания обмотки полюсов постоянным током используется специальный генератор постоянного тока — возбудитель. Частота вращения гидрогенераторов невелика — 80—250 об/мин.
Гидрогенератор Красноярской ГЭС (мощностью 500 МВт) имеет частоту вращения 93,8 об/мин, диаметр его ротора 16 м, а масса 1640 т. Для Саяно-Шушенской ГЭС проектируется генератор на 650 МВт.
Как я уже говорил, использование гидроэнергии не обходится даром для окружающей среды. Но тем не менее преимущество ГЭС перед тепловыми станциями не подлежит сомнению. Прежде всего, ГЭС не потребляет топлива, запасы которого ничтожны. Но у тепловых электростанций имеется и еще один крупнейший недостаток. При превращении энергии топлива в электрическую, неизбежно значительная часть энергии уходит впустую.
Тем не менее что-нибудь около 80 % электроэнергии вырабатывается на тепловых станциях при помощи турбогенераторов, в которых силой является давление пара.
Для того чтобы к. п. д. генератора был большим, необходимо елико возможно увеличить температуру пара. Понятно, что этого можно достигнуть, лишь одновременно увеличивая давление. На современных ТЭС мощностью 200–300 МВт в турбины пускается пар, имеющий температуру 565 °C и давление 24 МПа.
Но почему надо стремиться к высоким температурам? Дело заключается в следующем. В паровой турбине мы в конечном счете используем то же самое явление, которое заставляет подпрыгивать неплотно пригнанную крышку чайника, когда в нем закипает вода. Иными словами, в паровой турбине происходит превращение тепловой энергий в механическую, а затем уже механической в электрическую. Так вот, при первом превращении (это можно строго доказать) теряется энергии не меньше, чем доля, равная отношению температуры окружающей среды к температуре пара (в кельвинах).
Весьма печально, что в современных устройствах для извлечения энергии приходится проходить через «тепловую ступень». Такой переход всегда связан с огромной потерей энергии, и идеальной электростанцией будущего станет такое предприятие, где энергия любого происхождения будет превращаться в электрическую энергию непосредственно. Пока эта важнейшая проблема не решена, нам остается лишь одно: стремиться к наиболее высоким температурам пара, газа или плазмы.
Как это ни сложно, но все же удается добиться на тепловых электростанциях к. п. д. около 40 %. Паротурбинный генератор — это электрическая машина с горизонтальным валом. Ротор изготовляется вместе с концами вала в виде одной поковки из специальной турбороторной стали, так как механические напряжения в нем из-за большой частоты вращения (3000 об/мин) достигают предельно допустимых для современных материалов значений. По той же причине ротор не имеет явно выраженных полюсов. На части его цилиндрической поверхности имеются пазы, в которые укладывается обмотка возбуждения. В пазах статора уложена трехфазная обмотка переменного тока.
По причине больших механических напряжений диаметр poтopa ограничен, поэтому для получения достаточной мощности приходится машину вытягивать в длину.
Первые отечественные турбогенераторы мощностью 500 кВт шли изготовлены в Ленинграде на заводе «Электросила» в 1925 г. А в 1964 г. «Электросила» выпустила турбогенератор мощностью, превышающей в 1000 раз свой первенец — 500 000 кВт.
Стремление получить большую мощность от одной машины без увеличения и без того уже огромных размеров привело к очень значительному усложнению. Так, для уменьшения потерь в обмотке статора ее выполняют из полых медных проводников, внутри которых пропускают воду. Обмотка возбуждения охлаждается водородом под давлением около 4 атм. Применение водорода, имеющего в 14 раз меньшую плотность, чем воздух, позволило увеличить мощность турбогенераторов на 15–20 %.