В золе ядерного горючего содержится 450 сортов атомов, среди них уран-237 и нептуний-239, которые превращаются в нептуний-237 и плутоний-239.
В отличие от угля или нефти, ядерное горючее не сгорает до конца. Ядерные реакторы работают в ряде случаев на обогащенном топливе с содержанием урана-235 между 2,5 и 3,5 %. Реактор прекращает в какой-то момент давать энергию, потому что в процессе распада образуется большое число изотопов, которые захватывают нейтроны и препятствуют продолжению реакции деления. При остановке реактора в ядерном горючем остается примерно 1 % урана-235 и несколько меньшее количество плутония-239.
Не приходится и говорить, что выбрасывать эту золу, содержащую столь значительное количество ценного горючего, крайне нецелесообразно. Поэтому с атомной электростанцией можно «спаять» большую химическую фабрику. Это предприятие должно быть полностью автоматизировано, поскольку приходится обрабатывать материалы, обладающие очень сильной радиоактивностью. Необходимость в серьезных мерах диктуется требованием оградить персонал от гамма-излучения.
На этих фабриках обработанные горючие элементы должны быть размельчены, растворены. Чистое горючее должно быть выделено (уран и плутоний) и возвращено для изготовления новых горючих элементов.
Остаются значительные количества бесполезного сильно радиоактивного раствора, которые надо где-то похоронить. При этом должна быть полная уверенность, что в течение многих столетий с местами захоронения не произойдет каких-либо драматических событий.
Специалисты настроены более или менее оптимистически. Полагают, что хранение бочек с радиоактивным раствором на глубинах порядка 1 км в специально подобранных для этого местах гарантирует 100 %-ную безопасность. Какие же места являются подходящими? Это должны решить геологи. Разумеется, подходят области, где исключается возможность землетрясений. Кроме того, нужно гарантировать отсутствие подземных водяных течений. Таким условиям удовлетворяют места соляных залежей. Нельзя просто сбрасывать бочки в километровый колодец. Для того чтобы обеспечить рассеяние тепла, выделяемого каждой бочкой, их надо размещать по крайней мере на расстоянии 10 м друг от друга.
Как уже говорилось, химические и ядерные реакции очень схожи. Поскольку тепло выделяется не только при реакциях разложения, но зачастую и при соединении двух молекул в одну, то можно ожидать что и атомные ядра ведут себя подобным образом.
Ответить на вопрос, какие реакции слияния ядер могут оказаться энергетически выгодными, зная массы атомных ядер, совсем нетрудно.
Ядро дейтерия имеет массу 2,0146 а. е. м. Если два ядра сольются в одно; то образуется 4Не. Но его масса 4,0038, а не 4,0292. Избыток массы 0,0254 а. е. м. эквивалентен энергии, равной примерно 25 МэВ, или 4∙10-12 Дж. В 1 г дейтерия 0,3∙1024 атомов. Так что если бы такая реакция прошла, то 2 г дали бы 1018 Дж энергии!.. Оказывается, что наиболее перспективными являются реакции слияния тяжелых изотопов водорода — дейтерия, трития. Но и обычный водород тоже годится в качестве термоядерного горючего.
Термины, которыми мы пользуемся, носят совершенно условный характер. Во всех случаях речь идет о ядерной энергии. Но так уж сложилось, что энергию расщепления атомных ядер стали называть атомной энергией, а энергию слияния — термоядерной. Логики в этих терминах маловато. Но к ним привыкли.
«Термояд» (жаргонное слово) мог бы обеспечить землян энергией на миллионы лет, и при этом уровень воды в Мировом океане заметно бы не понизился. Так что можно считать термоядерную энергию даровой.
Но от идеи до ее осуществления дистанция огромная. Ведь все атомные ядра заряжены положительно. Ясно, чтобы подвести их на близкое расстояние друг к другу, нужна огромная энергия.
Откуда ее взять? Единственная возможность — это перевести вещество в состояние плазмы, т. е. оголить атомные ядра, а потом повысить температуру плазмы настолько, чтобы ядра начали соударяться (т. е. приблизились друг к другу на расстояние 10-13 см), презрев электрическое отталкивание.
Результат расчета крайне огорчителен. Предоставляю вам самим подсчитать величину энергии электростатического отталкивания по формуле е2/r, а затем прикинуть (для этого надо вспомнить формулу, которая связывает температуру с кинетической энергией любой частицы), каких температур надо достигнуть. Окажется, что десятков миллионов кельвинов.
Итак, надо создать высокотемпературную плазму. Есть два пути — один, по которому отряды физиков шагают уже более двух десятилетий, и другой, который лет на пятнадцать моложе.