Выбрать главу

Но на чем стоит волчок? Если он находится на подставке, которая поворачивается вместе с самолетом, то как же ось вращения сможет сохранить свое направление?

Подставкой служит устройство типа так называемого карданова подвеса (рис. 5.15). В этом устройстве при минимальном трении в опорах волчок может вести себя так, как будто он подвешен в воздухе.

При помощи вращающихся волчков можно автоматически поддерживать заданный курс торпеды или самолета. Это делается при помощи механизмов, «следящих» за отклонением направления оси торпеды от направления оси волчка.

На применении вращающегося волчка основано устройство такого важного прибора, как гирокомпас. Можно доказать, что под действием силы Кориолиса и сил трения ось волчка в конце концов устанавливается параллельно земной оси и, значит, указывает на север.

Гирокомпасы широко применяются в морском флоте. Главная их часть — мотор с тяжелым маховиком, делающим до 25 000 об/мин.

Несмотря на ряд трудностей в устранении различных помех, в частности от качки корабля, гирокомпасы имеют преимущество перед магнитными компасами. Недостаток последних — искажение показаний из-за влияния железных предметов и электрических установок на корабле.

ГИБКИЙ ВАЛ

Валы современных паровых турбин — важные части этих грандиозных машин. Изготовление таких валов, достигающих 10 м в длину и 0,5 и в поперечнике, — сложная технологическая задача. Вал мощной турбины может нести нагрузку около 200 т и вращаться со скоростью 3000 об/мин.

На первый взгляд может показаться, что такой вал Должен быть исключительно твердым и прочным. Это, однако, не так. При десятках тысяч оборотов в минуту жестко закрепленный и не способный изгибаться вал неминуемо ломается, какова бы ни была его прочность.

Нетрудно понять, почему непригодны жесткие валы. Как бы точно ни работали машиностроители, они не могут избежать хотя бы небольшой асимметрии колеса турбины. При вращении такого колеса возникают огромные центробежные силы — напомним, что их значения пропорциональны квадрату скорости вращения. Если они не уравновешены в. точности, то вал начнет «биться» о подшипники (ведь неуравновешенные центробежные силы «вращаются» вместе с машиной), сломает их и разнесет турбину.

Это явление создавало в свое время непреодолимые затруднения в увеличении скорости вращения турбины. Выход из положения был найден на рубеже прошлого и нынешнего веков. В технику турбостроения были введены гибкие валы.

Для того чтобы понять, в чем заключалась идея этого замечательного изобретения, нам надо вычислить суммарное действие центробежных сил. Как же сложить эти силы? Оказывается, что равнодействующая всех центробежных сил приложена в центре тяжести вала и имеет такую же величину, как если бы вся масса колеса турбины была сосредоточена в центре тяжести.

Обозначим через а расстояние центра тяжести колеса турбины от оси, отличное от нуля из-за небольшой асимметрии колеса. При вращении на вал будут действовать центробежные силы, и вал изогнется. Обозначим смещение вала через l. Подсчитаем эту величину. Формула для центробежной силы нам известна (см. стр. 67) — эта сила пропорциональна расстоянию от центра тяжести до оси, которое теперь есть а + l, и равна 4π2n2M∙(а + l), где n — число оборотов в минуту, а М — масса вращающихся частей. Центробежная сила уравновешивается упругой силой, которая пропорциональна смещению вала и будет равна kl, где коэффициент k характеризует жесткость вала. Итак:

kl = 4π2n2M∙(а + l),

откуда

Судя по этой формуле, гибкому валу не страшны большие обороты. При очень больших (пусть даже бесконечно больших) значениях n прогиб вала l не растет неограниченно. Значение k/4π2n2M, фигурирующее в последней формуле, обращается в нуль, а прогиб вала l становится равным величине асимметрии с обратным знаком.

Этот результат вычисления означает, что при больших оборотах асимметричное колесо, вместо того чтобы разорвать вал, изгибает его так, чтобы уничтожилось влияние асимметрии. Изгибающийся вал центрирует вращающиеся части, своим изгибом переносит центр тяжести на ось вращения и таким образом приводит к нулю действие центробежной силы.