где ρ — плотность, R — радиус Земли.
Это значит, что g менялось бы прямо пропорционально (R — H): чем больше глубина Н, тем меньше было бы g.
На самом же деле поведение g вблизи земной поверхности — мы можем проследить за ним вплоть до глубин 5 км (ниже уровня моря) — совсем не подчиняется этому закону. Опыт показывает, что в этих слоях g, наоборот, растет с глубиной. Расхождение опыта с формулой объясняется тем, что не было учтено различие плотности на разных глубинах.
Средняя плотность Земли легко находится делением массы на объем земного шара. Это приводит нас к цифре 5,52. В то же время плотность поверхностных пород много меньше — она численно равна 2,75. Плотность земных слоев растет с глубиной. В поверхностных слоях Земли этот эффект берет верх над идеальным уменьшением, которое следует из выведенной формулы, и величина g возрастает.
На простом примере мы уже познакомились с энергией тяготения. Тело, поднятое на высоту h над Землей, обладает потенциальной энергией mgh.
Однако этой формулой можно пользоваться лишь тогда, когда высота h много меньше радиуса Земли.
Энергия тяготения — важная величина, и интересно получить формулу ее, которая годилась бы для тела, поднятого на любую высоту над Землей, а также вообще для двух масс, притягивающихся по универсальному закону:
Положим, что под действием взаимного притяжения тела немного сблизились. Между ними было расстояние r1, а стало r2. При этом совершается работа А = F∙(r1 — r2). Значение силы надо взять в какой-то средней точке. Итак,
Если r1 и r2 мало отличаются друг от друга, то можно заменить r2ср произведением r1r2. Получаем:
Эта работа произведена за счет энергии тяготения:
A = U1 — U2,
где U1 — начальное, a U2— конечное значение потенциальной энергии тяготения.
Сопоставляя эти две формулы, находим для потенциальной энергии выражение
Оно похоже на формулу силы тяготения, но в знаменателе стоит r в первой степени.
По этой формуле при очень больших r потенциальная энергия U = 0. Это разумно, так как на таких расстояниях притяжение уже не будет чувствоваться. Но при сближении тел потенциальная энергия должна уменьшаться. Ведь за ее счет происходит работа.
А куда же уменьшаться от нуля? В отрицательную сторону. Поэтому в формуле и стоит минус. Ведь —5 меньше нуля, а —10 меньше —5.
Если речь идет о движении около земной поверхности, то общее выражение силы тяготения можно заменить произведением mg. Тогда с большой точностью U1 — U2 = mgh.
Но на поверхности Земли тело имеет потенциальную энергию — γ∙M∙m/R — где R — радиус Земли. Значит, на высоте h над земной поверхностью
Когда мы впервые ввели формулу потенциальной энергии U = mgh, было условлено высоту и энергию отсчитывать от земной поверхности. Пользуясь формулой U = mgh, мы отбрасываем постоянный член — γ∙M∙m/R, условно считаем его равным нулю. Так как нас интересуют лишь разности энергий — ведь обычно измеряется работа, которая есть разность энергий, — то присутствие постоянного члена — у в формуле потенциальной энергии роли не играет.
Энергия тяготения определяет прочность цепей, «привязывающих» тело к Земле. Как порвать эти цеци, как добиться того, чтобы брошенное с Земли тело не вернулось на Землю? Ясно, что для этого нужно придать телу большую начальную скорость. Но каково же минимальное требование?
По мере отдаления от Земли потенциальная энергия выброшенного с Земли тела (снаряда, ракеты) будет расти (абсолютное значение U падает); кинетическая энергия будет падать. Если кинетическая энергия тела станет равной нулю преждевременно, до того как мы оборвем цепи тяготения земного шара, выброшенный снаряд упадет обратно на Землю.