Выбрать главу

Необходимо, чтобы тело сохраняло кинетическую энергию до тех пор, пока его потенциальная энергия практически не упадет до нуля. Перед отправлением снаряд обладал потенциальной энергией — γ∙Mm/R (М и R — масса и радиус Земли). Поэтому снаряду нужно дать такую скорость, которая сделала бы полную энергию оторвавшегося снаряда положительной. Тело с отрицательной полной энергией (абсолютное значение потенциальной энергии больше значения кинетической) не выберется за пределы сферы тяготения.

Таким образом, мы приходим к простому условию. Для того чтобы тело массы m оторвать от Земли, надо, как уже сказано, преодолеть потенциальную энергию тяготения

Скорость снаряда должна быть при этом доведена до значения так называемой второй космической скорости которую легко вычислив из равенства кинетической и потенциальной энергий:

или, так как g = γ∙M/R2,

v22 = 2∙gR.

Значение v2, вычисляемое но этой формуле, составляет 11 км/с — конечно, без учета сопротивления атмосферы. Эта скорость в √2 = 1,41 раза больше первой космической скорости v1 = √(gR) искусственного спутника, вращающегося около земной поверхности, т. е v2 = √2∙v1.

Масса Луны в 81 раз меньше массы Земли; радиус ее меньше земного в четыре раза. Поэтому энергия тяготения на Луне в двадцать раз меньше, чем на Земле, и для отрыва от Луны достаточно скорости 2,5 км/с.

Кинетическая энергия mv22/2 тратится на то, чтобы порвать цепи тяготения к планете — отправной станции. Если же мы хотим, чтобы, преодолев тяготение, ракета двигалась со скоростью v, то на это нужна дополнительная энергия mv2/2. В этом случае, посылая ракету в путешествие, необходимо сообщить ей энергию mv02/2 = (mv22/2) + (mv2/2). Таким образом, три скорости, о которых идет речь, связаны простым соотношением:

v02 = v22 + v2

Чему же должна равняться скорость v3, нужная для преодоления тяготения Земли и Солнца, — минимальная скорость снаряда, посылаемого к далеким звездам?

Эту скорость мы обозначили v3, потому что ее называют третьей космической скоростью.

Определим прежде всего значение скорости, необходимой для преодоления одного лишь притяжения Солнца.

Как мы только что показали, скорость, нужная для выхода из сферы земного притяжения снаряда, отправляемого в путешествие, в √2 раз больше, чем скорость вывода на орбиту земного спутника. Эти рассуждения в равной степени относятся и к Солнцу, т. е. скорость, нужная для ухода от Солнца, в √2 раз больше, чем скорость спутника Солнца (т. е. Земли). Поскольку скорость движения Земли вокруг Солнца составляет примерно 30 км/с, то скорость, необходимая для ухода из сферы притяжения Солнца, равна 42 км/с. Это очень много, однако для отправления снаряда к далеким звездам надо, разумеется, использовать движение земного шара и запускать тело в ту сторону, куда движется Земля. Тогда нам нужно добавить всего 42–30 = 12 км/с.

Теперь мы можем окончательно вычислить третью космическую скорость. Это скорость, с которой надо вывести ракету, чтобы, выйдя из сферы земного притяжения, она имела скорость 12 км/с. Воспользовавшись формулой, приведенной только что, получим:

v32 = (11)2 + (12)2,

откуда v3=16 км/с.

Итак, имея скорость около 11 км/с тело покинет Землю, но «далеко» такой снаряд не уйдет; Земля его отпустила, по Солнце не даст ему свободы. Он превратится в спутника Солнца.

Оказывается, что скорость, необходимая для межзвездного путешествия, всего лишь в полтора раза больше скорости, нужной для путешествия по Солнечной системе внутри земной орбиты. Правда как уже говорилось, всякое заметное увеличение начальной скорости снаряда сопряжено с немалыми техническими трудностями (см. стр. 87).

КАК ДВИЖУТСЯ ПЛАНЕТЫ

На вопрос, как движутся планеты, можно ответить кратко: повинуясь закону тяготения. Ведь силы тяготения — единственные силы, приложенные к планетам.

Так как масса планет много меньше массы Солнца, то силы взаимодействия между планетами не играют большой роли. Каждая из планет движется почти так, как это диктует ей сила притяжения одного лишь Солнца, словно других планет и не существует.