Выбрать главу

Когда мы раньше обсуждали, какие силы действуют на лежащую на столе книгу, то уверенно говорили: притяжение Земли и сила реакции. Но, строго говоря, лежащая на столе книга притягивается и Луной, и Солнцем, и даже звездами.

Луна — наш ближайший сосед. Забудем про Солнце и звезды и посмотрим, насколько изменится вес тела на Земле под действием Луны.

Земля и Луна находятся в относительном движении. По отношению к Луне Земля как целое (т. е. все точки Земли) движется с ускорением γ∙m/r2, где m — масса Луны, а m — расстояние от центра Луны до центра Земли.

Рассмотрим тело, лежащее на поверхности Земли. Нас интересует, насколько изменится его вес под действием Луны. Земной вес определяется ускорением по отношению к Земле. Поэтому, иными словами, нас интересует, насколько изменится под действием Луны ускорение лежащего на земной поверхности тела по отношению к Земле.

Ускорение Земли по отношению к Луне γ∙m/r2;ускорение тела, лежащего на поверхности Земли, по отношению к Луне γ∙m/r12, где r1 — расстояние от тела до центра Луны (рис. 6.10).

А нам нужно найти дополнительное ускорение тела по отношению к Земле: оно будет равно геометрической разности соответствующих ускорений.

Величина γ∙m/r2 — постоянное число для Земли, a γ∙m/r12 — разное в разных точках земной поверхности. Значит, и интересующая нас геометрическая разность будет различной для разных мест земного шара.

Какова будет земная тяжесть в наиболее близком к Луне месте, в самом отдаленном от нее и посередине на земной поверхности?

Для нахождения вызванного Луной ускорения тела по отношению к центру Земли, т. е. поправки к земному g, надо из величины γ∙m/r1, в указанных местах земного шара (светлые стрелки на рис. 6.11) вычесть постоянную величину γ∙m/r2. При этом надо помнить, что ускорение γ∙m/r2 — Земли по отношению к Луне — направлено параллельно линии центр Земли — центр Луны. Вычитание вектора равносильно прибавлению обратного вектора. Жирными стрелками на рисунке показаны векторы —γ∙m/r2.

Складывая изображенные на рисунке векторы, мы найдем то, что нас интересует: изменение ускорения свободного падения на поверхности Земли, возникающее благодаря влиянию Луны.

В месте, наиболее близком к Луне, результирующее дополнительное ускорение будет равно:

и направлено к Луне. Земная тяжесть уменьшается, тело в точке А становится легче, чем при отсутствии Луны.

Имея в виду, что R много меньше r, написанную формулу можно упростить. Приведя к общему знаменателю, получим:

Отбросив в скобках относительно малую величину R, вычитаемую из значительно больших величин r или 2r, получим

2γ∙mR/r3

Перенесемся теперь к антиподам. В точке В ускорение, вызванное Луной, не больше, а меньше общего земного. Но мы находимся теперь на дальней от Луны стороне земного шара. Уменьшение притяжения Луной приводит на этой стороне земного шара к тем же результатам, что увеличение притяжения в точке А — к уменьшению ускорения свободного падения. Неправда ли, неожиданный результат — и здесь тело становится легче под действием Луны. Разность

оказывается по абсолютной величине такой же, как в точке А.

Иначе дело обстоит на средней линии. Здесь ускорения направлены под углом, и вычитание общего ускорения Земли Луною γ∙m/r2 и ускорения Луною лежащего на Земле тела γ∙m/r12 надо произвести геометрически (рис. 6.12).

Мы ничтожно отойдем от средней линии, если расположим тело на Земле так, чтобы r1 и r равнялись по величине. Векторная разность ускорений представляет собой основание равнобедренного треугольника. Из подобия треугольников, изображенных на рис. 6.12, видно, что искомое ускорение во столько раз меньше γ∙m/r2, во сколько R меньше r. Значит, искомая добавка к g на средней линии земной поверхности равна