Длина лома около 1,5 м, а точку опоры обычно трудно установить ближе, чем в 10 см от конца. Поэтому одно плечо будет больше другого в 15–20 раз, а значит, такте же будет и выигрыш в силе.
Автомашину массой в несколько тонн шофер легко приподнимает при помощи домкрата. Домкрат — рычаг такого же типа, как лом, положенный на опору. Точки приложения сил (рука, автомобиль) лежат по обе стороны от точки опоры рычага домкрата. Здесь выигрыш в силе примерно в 40–50 раз, что дает возможность легко поднять огромную тяжесть.
Ножницы, щипцы для орехов, плоскогубцы, клещи, кусачки и многие другие инструменты — все это рычаги. На рис. 5.3 вы легко найдете центр вращения твердого тела (точку опоры) и точки приложения двух сил — действующей и мешающей.
Когда ножницами режут жесть, стараются раскрыть их как можно шире. Что этим достигается? Кусок металла удается подсунуть поближе к центру вращения. Плечо преодолеваемого момента сил становится меньше, а выигрыш в силе, значит, больше. Сдвигая колечки ножниц или ручки кусачек, взрослый человек действует обычно силой в 40–50 кгс. Одно плечо может превысить другое раз в 20. Оказывается, мы способны вгрызаться в металл с силой в 1000 кгс. И это при помощи столь несложных инструментов.
Разновидностью рычага является ворот. При помощи ворота (рис. 5.4) во многих деревнях вытаскивают воду из колодца.
Инструменты делают человека сильным, однако из этого совсем не следует, что инструменты позволяют потратить мало работы и получить много. Закон сохранения энергии убеждает, что выигрыш в работе, т. е. создание работы из «ничего», есть вещь невозможная.
Работа полученная не может быть больше затраченной. Напротив, неизбежные потери энергии на трение приведут к тому, что полученная при помощи инструмента работа всегда будет меньше затраченной. В идеальном случае эти работы могут быть равными.
Собственно говоря, мы напрасно теряем время на разъяснение этой очевидной истины: ведь правило моментов было выведено из условия равенства работ действующей и преодолеваемой силы.
Если точки приложения сил прошли пути s1 и s2, то условие равенства работ запишется так:
F1прод∙s1 = F2прод∙s2
Преодолевая при помощи рычажного инструмента какую-либо силу F2 на пути s2, мы можем проделать это силой F1, много меньшей F2. Но перемещение руки s1 должно быть во столько же раз больше s2, во сколько раз мускульная сила F1 меньше F2.
Часто этот закон выражают короткой фразой: выигрыш в силе равен проигрышу в пути.
Правило рычага было открыто величайшим ученым древности — Архимедом. Увлеченный силой доказательств, этот замечательный ученый древности писал сиракузскому царю Герону: «Если бы была другая Земля, я перешел бы на нее и сдвинул бы нашу Землю».
АРХИМЕД (около 287–212 г. до н. э.) — величайший математик, физик и инженер древности. Архимед вычислил объем и поверхность шара и его частей, цилиндра и тел, образованных вращением эллипса, гиперболы и параболы. Он впервые со значительной точностью вычислил отношение длины окружности к ее диаметру, показав, что оно заключено в пределах 3 10/71 < π < 3 1/7. В механике им были установлены законы рычага, условия плавания тел («закон Архимеда»), законы сложения параллельных сил. Архимед изобрел машину для подъема воды («архимедов винт», и в наше время применяющийся для транспортировки сыпучих и вязких грузов), системы рычагов и блоков для поднятия больших тяжестей и военные метательные машины, успешно действовавшие во время осади его родного города Сиракуз римлянами.
Очень длинный рычаг, точка опоры которого близка к земному шару, кажется, дал бы возможность решить такую задачу.
Мы не станем горевать с Архимедом об отсутствии точки опоры, которой, как он думал, ему только и недоставало, чтобы сместить земной шар.
Пофантазируем: возьмем крепчайший рычаг, положим его на опору и на короткий конец «подвесим маленький шарик» весом в… 6∙1024 кгс. Эта скромная цифра показывает, сколько весит земной шар, «сжатый в маленький шарик». Теперь к длинному концу рычага приложим мускульную силу.
Если силу руки Архимеда считать за 60 кгс, то для смещения «земляного орешка» на 1 см руке Архимеда придется проделать путь в 6∙1024/60 = 1023 раз больше.