Закон сохранения суммарного момента импульса универсален, верен для любой замкнутой системы тел.
Если тело вращается вокруг оси, то его момент импульса равен
N = m∙v∙r
где m — масса тела, v — скорость и r — расстояние тела от оси. Выражая скорость через число оборотов в секунду π, имеем:
v = 2π∙n∙r и N = 2π∙m∙n∙r2,
т. е. момент импульса тела пропорционален квадрату расстояния от оси.
Сядьте на табуретку с вращающимся сидением. Возьмите в руки тяжелые гири, широко расставьте руки и попросите кого-нибудь привести вас в медленное вращение. Теперь быстрым движением прижмите руки к груди — вы неожиданно начнете вращаться быстрее.
Руки в стороны — движение замедлится, руки к груди — движение ускорится. Пока из-за трения табуретка не перестанет вращаться, вы успеете несколько раз изменить свою скорость вращения.
Отчего это происходит?
Момент импульса при неизменном количестве оборотов в случае приближения гирь к оси упал бы. Для того чтобы «скомпенсировать» это уменьшение, и увеличивается скорость вращения.
Успешно используют закон сохранения момента импульса акробаты. Как акробат выполняет «сальто» — переворачивание в воздухе? Прежде всего — толчок от пружинящего настила или от руки партнера. При толчке тело наклонено вперед, и вес вместе с силой толчка создают мгновенный момент силы. Сила толчка создает движение вперед, а момент силы обусловливает вращение. Однако это вращение медленное, оно но произведет впечатления на зрителя. Акробат поджимает колени. «Собирая свое тело» поближе к оси вращения, акробат значительно увеличивает скорость вращения и быстро переворачивается. Такова механика «сальто».
На этом же принципе основаны движения балерины, совершающей быстрые, следующие один за другим повороты. Обычно начальный момент импульса придает балерине ее партнер. В этот момент корпус танцовщицы наклонен; начинается медленное вращение, затем изящное и быстрое движение — балерина выпрямляется. Теперь все точки тела находятся ближе к оси вращения, и сохранение момента импульса приводит к резкому увеличению скорости.
До сих пор речь шла о величине момента импульса. Но момент импульса является вектором.
Рассмотрим вращение точки по отношению к какому-либо «центру». На рис. 5.14 изображены два близких положения точки.
Интересующее нас движение характеризуется моментом импульса и плоскостью, в которой оно происходит. Плоскость движения заштрихована на рисунке — это площадь, пройденная радиусом, приведенным из «центра» к движущейся точке.
Можно объединить сведения о направлении плоскости движения и о моменте импульса. Для этого служит вектор момента импульса, направленный вдоль нормали к плоскости движения и равный по величине абсолютному значению момента импульса. Однако это еще не все — нужно учесть направление движения в плоскости: ведь тело может поворачиваться около центра как по часовой стрелке, так и против нее.
Принято рисовать вектор момента импульса таким образом, чтобы, смотря против вектора, видеть поворот точки против часовой стрелки. Можно сказать и иначе: направление вектора момента импульса связано с направлением поворота так, как направление ввинчивающегося штопора связано с направлением движения его ручки.
Таким образом, если мы знаем вектор момента импульса, мы можем судить о величине момента импульса, о положении плоскости движения в пространстве и о направлении поворота по отношению к «центру».
Если движение происходит в одной и той же плоскости, но плечо и скорость меняются, то вектор момента импульса сохраняет свое направление в пространстве, но меняется по длине. А в случае произвольного движения вектор импульса меняется как по величине, так и по направлению.
Может показаться, что такое объединение в одном понятии направления плоскости движения и величины момента импульса служит лишь целям экономии слов. В действительности, однако, когда мы имеем дело с системой тел, которые движутся не в одной плоскости, мы получим закон сохранения момента импульса только тогда, когда будем складывать моменты импульсов как векторы.
Это обстоятельство и показывает, что приписывание векторного характера моменту импульса имеет глубокое содержание.
Момент импульса всегда определяется относительно какого-либо условно выбранного «центра». Естественно, что его величина, вообще говоря, зависит от выбора этой точки. Можно, однако, показать, что если рассматриваемая нами система тел как целое покоится (ее полный импульс равен нулю), то вектор момента импульса не зависит от выбора «центра». Этот момент импульса можно назвать внутренним моментом импульса системы тел.