При постоянном действии ионизатора между двумя процессами установится равновесие. Так обстоит дело в окружающей наш земной шар ионосфере. В зависимости от времени суток и года число ионизованных частиц в одном кубическом сантиметре колеблется от миллиона до ста миллионов электронов и ионов. Так что степень ионизации есть величина порядка одного процента (вспомните, сколько молекул воздуха находится в единице объема на больших высотах).
Вернемся к ионизованному газу в трубке под электрическим напряжением. Разумеется, оно нарушает равновесие, ибо часть ионов достигает электродов, не успев рекомбинировать. По мере увеличения напряжения все большая, и большая часть создаваемых в единицу времени ионов достигает электродов — электрический ток через газ растет. Так продолжается до тех пор, пока совсем не останется времени для рекомбинации при этом все ионы, создаваемые ионизаторами, доходят до электродов. Ясно что дальнейшее увеличение напряжения не может увеличить тока (ток насыщения, плато на рис. 2.7).
Чем меньше плотность газа, тем при меньших напряжениях поля будет достигнут ток насыщения.
Сила тока насыщения равна заряду ионов, образуемых ионизатором за секунду в объеме трубки. Обычно токи насыщения невелики — порядка микроампер и меньше. Конечно, их величина зависит от того, сколько разрушающих снарядов получает газ от ионизатора.
Если работать в режиме вольт-амперной характеристики, не выходящем за пределы тока насыщения, и защитить газ от действия внешнего ионизатора, то ток прекратится. В этом случае говорят о несамостоятельном газовом разряде.
При дальнейшем увеличении напряжения возникают новые явления. В некоторый момент скорость электронов становится достаточной для выбивания электронов из нейтральных атомов и молекул. Напряжение на трубке должно при этом достигнуть такого значения, при котором электрон успевает набрать на длине свободного пробега энергию, достаточную для ионизации молекулы. Возникновение ударной ионизации сказывается на кривой зависимости тока от напряжения: ток начинает расти, поскольку увеличение напряжения означает увеличение скорости движения электрона. Увеличение же скорости влечет за собой увеличение ионизующей способности электрона, а следовательно, создание большого числа пар ионов и увеличение силы тока. Кривая вольт-амперной характеристики быстро вздымается кверху. По сравнению с током насыщения сила тока увеличивается в сотни и тысячи раз. Газ начинает светиться.
Если теперь устранить действие внешнего ионизатора, то ток не прекратится. Мы перешли в область самостоятельного разряда. Напряжение, при котором происходи? это качественное изменение, называют напряжением пробоя или напряжением зажигания газового разряда.
Резкое возрастание тока после перехода этого критического предела объясняется лавинообразным увеличением числа зарядов. Один образовавшийся электрон разрушает нейтральную молекулу и создает два заряда такой большой энергии, что они способны разбить другую пару молекул, попавшуюся им по дороге. Из двух зарядов образуются четыре, из четырех восемь… Согласитесь, что название «лавина» вполне оправдано.
Создана количественная теория, которая неплохо предсказывает вид вольт-амперных характеристик газов.
Существует много разновидностей этого разряда. Мы остановимся лишь на некоторых из них.
Искровой разряд. Искру, проскакивающую через воздух между двумя электродами, нетрудно наблюдать в самых элементарных опытах. Для этого надо поднести друг к другу провода, находящиеся под напряжением, достаточно близко друг к другу. Что значит «достаточно»? Если речь идет о воздухе, то для этого требуется создать напряженность поля, равную 30 тысячам вольт на один сантиметр. Значит при маленьком расстоянии в один миллиметр достаточно разности потенциалов в 300 вольт. Небольшие искры каждый из читателей неоднократно наблюдал в житейской практике, возясь с неисправной электропроводкой или случайно приблизив друг к другу два провода, идущие от аккумулятора (тут уже надо сблизить провода на толщину бритвенного лезвия).
Напряжение пробоя зависит от плотности газа. Играет роль и форма электродов.
Искра пробивает не только газ, но также и диэлектрические жидкости и твердые тела. Электротехнику важно знать пробойные напряжения всех материалов, которыми он оперирует.
Сейчас нам кажется совершенно очевидным, что молния — это искра, которая проскакивает между двумя облаками, заряженными электричеством разных знаков. Однако в свое время физики (Михаил Васильевич Ломоносов (1711–1765), Бенджамин Франклин (1706–1790)) положили немало сил для доказательства этого утверждения. А Георг Рихман (1711–1753), работавший вместе с Ломоносовым, поплатился своей жизнью при попытке отвести молнию в Землю через проводящую ток бечевку — хвост воздушного змея, запущенного в небо во время грозы.