Предоставим читателю сообразить, что плотность тока) может быть записана как произведение числа электронов в единице объема на заряд электрона и на упорядоченную скорость: j = n∙е∙u. Подставляя в эту формулу значение упорядоченной скорости электронов, поручим: j = (n∙e2∙l/m∙v)∙Е, т. е. удельная электропроводность равна
σ = n∙e2∙l/m∙v
Если считать, что каждый атом отдает в общее пользование один электрон, то получится, что проводник имеет удельное сопротивление порядка 10-5 Ом∙м. Очень разумная величина! Она подтверждает как справедливость грубой модели, так и правильность выбора значения параметров нашей «теорий». Я ставлю слово «теория» в кавычки лишь по той причине, что она груба и элементарна. Однако этот пример иллюстрирует типичный физический подход к истолкованию явлений.
Согласно теории свободного электронного газа электрическое сопротивление должно уменьшаться с падением температуры. Только не торопитесь связывать это обстоятельство с изменением хаотической скорости движения электронов. Дело не в ней. Эта скорость мало зависит от температуры. Уменьшение сопротивления связано с тем, что размах колебаний атомов становится меньше, а благодаря этому растет длина свободного пробега электронов.
Этот же факт можно передать и такими словами: при увеличении амплитуд колебания атомов электроны в большей степени рассеиваются в разные стороны. Конечно, благодаря этому слагающая скорости в направлении тока должна уменьшиться, т. е. сопротивление должно возрасти.
Увеличением рассеяния электронов объясняют также возрастание сопротивления металла (и не только металла) с добавлением примесей. Действительно, примесные атомы играют роль дефектов кристаллической структуры и следовательно способствуют рассеянию электронов.
Электрическая энергия передастся по проводам. Из-за электрического сопротивления провода забирают энергию у источника тока. Потери эти огромны, и борьба с ними представляет собой важнейшую техническую задачу.
Есть надежда, что эта задача может быть решена, ибо существует замечательное явление сверхпроводимости.
Голландским физиком Камерлинг-Оннесом в 1911 г. было обнаружено, что при температурах, близких к абсолютному нулю, некоторые тела скачком теряют практически полностью свое электрическое сопротивление. Если в кольце сверхпроводника возбудить электрический ток, то он будет течь в проводнике сутками, не затухая. Из чистых металлов наиболее высокой температурой, при которой проявляются сверхпроводящие свойства, обладает ниобий (9 К). Не приходится и говорить, сколь настойчиво занят огромный отряд ученых поиском сверхпроводников, которые приобрели бы это замечательное свойство при более высокой температуре. Пока что успехи не очень велики. Найден сплав, который как будто становится сверхпроводящим при температуре около 20 К.
Однако есть основания полагать, что этот предел можно будет повысить (а может быть и довести до комнатных температур). Поиск ведется среди особых полимерных веществ, среди сложных слоистых материалов, в которых диэлектрик чередуется с металлом. Трудно переоценить значимость этой проблемы. Я беру на себя смелость считать ее одной из важнейших проблем современной физики.
Работы по поиску сверхпроводников, приобретающих это свойство при достаточно высоких температурах, приняли большой размах после того, как была построена теория этого явления. Теория подсказала пути поиска нужных материалов.
Характерно, что между открытием явления и его объяснением прошло очень много времени. Теория была создана в 1957 г. Надо отметить, что законы квантовой физики, с помощью которых построена теория сверхпроводимости, были установлены еще в 1926 г. Из этого следует, что объяснение явления было далеко не простым. В этой книжке я могу лишь дать объяснение, так сказать, с середины истории. Оказывается, что по мере замедления колебаний атомной решетки некоторым электронам удается «спариться». Такая «пара» ведет себя согласованно. Когда происходит рассеяние пары на атомах (а именно это рассеяние и есть, как мы говорили выше, причина сопротивления), то отскакивание одного из членов пары в сторону компенсируется поведением его «друга». Компенсируется в том смысле, что суммарный импульс пары электронов остается неизменным. Таким образом, рассеяние электронов не исчезает, но перестает влиять на прохождение тока.