Мы только что говорили, что для выхода электрона за пределы металла требуется работа. Естественно предположить, что эта работа выхода А не одинакова у разных металлов. Раз так, то между двумя спаянными металлами возникнет напряжение, равное
(1/e)∙(A1 — A2)
Можно опытным путем удостовериться в наличии контактного напряжения. Но само по себе оно не может явиться причиной электрического тока в замкнутой цепи. Действительно, замкнутая цепь состоит из двух спаев и контактные напряжения будут погашать друг друга. Но почему же разность температуры спаев создает электродвижущую силу? Ответ подсказывает логика. Видимо, контактное напряжение зависит от температуры. Нагрев одного из спаев делает напряжения неравными и ведет к появлению тока. Но нужно принять во внимание и другое явление. Вполне естественно предположить, что между концами проводника имеется электрическое поле, если эти концы находятся при разных температурах. Ведь при более высокой температуре электроны движутся быстрее. Раз так, то начнется диффузия электрических зарядов, которая будет происходить до тех пор, пока не создастся поле, уравновешивающее тенденцию к равномерному распределению.
Опыты не оставляют сомнения в том, что оба явления присутствуют одновременно и оба они должны быть приняты во внимание при создании теории.
Термоэлектродвижущие силы невелики — порядка единиц милливольт при разностях температур в 100 градусов. Но такие напряжения измеряются легко. Поэтому термоэлектродвижущий эффект используют для измерения температур. Ведь в расплав металла стеклянный термометр не сунешь. Вот в таких случаях термопара (так называется термоэлемент, используемый для измерения температуры) и оказывается великолепным инструментом. Впрочем, у термопары еще много достоинств. Сколь существенна возможность измерения температуры на больших расстояниях! А чувствительность! Электрические измерения очень точны, и оказывается, что с помощью термопары можно мерить разности температур в миллионные доли градуса.
Эта высокая чувствительность позволяет применять термоэлементы для измерения тепловых потоков, приходящих со стороны отдаленных объектов. Читатель может прикинуть сам возможности термоэлемента. Достаточно сказать, что десятые доли эрга в секунду не являются для него пределом.
Так же как и аккумуляторы, термоэлементы иногда собирают в батареи. Если нужна не очень большая энергия, то такая батарея может служить генератором энергии, который находит себе применение для радиосвязи.
Многие вещества — и элементы, и химические соединения — заполняют по значениям своей проводимости широчайший интервал между проводниками и изоляторами. О существовании таких тел было известно очень давно. Но каких-нибудь двадцать лет назад вряд ли кто-либо предвидел, что физика полупроводников породит отрасль промышленности, важность которой трудно переоценить. Нет полупроводников — значит нет современных электронно-вычислительных машин, телевизоров и магнитофонов. Без полупроводников немыслима современная радиотехника.
Проводимость изоляторов лежит между 10-8 и 10-18 Ом-1∙м-1, проводимость металлов имеет значения между 102 и 104 этих же единиц. Удельная проводимость полупроводников лежит между этими двумя интервалами. Однако мы узнаем, что имеем дело с полупроводником, не только по величине его сопротивления.
Так же как и в случае металлов, при протекании тока в полупроводниках мы не наблюдаем каких бы то ни было химических изменений. Значит ионы этих веществ, образующие каркас кристаллической решетки, не перемещаются под действием поля. Следовательно, как и в металлах, мы должны приписать проводимость движению электронов.
Хотя это обстоятельство вроде бы самоочевидно, но на заре изучения полупроводников физики решили на всякий случай проверить, какие заряды являются переносчиками тока. В случав твердых тел эту проверку можно сделать при помощи эффекта Холла.
В следующей главе я напомню вам, что под действием магнитного поля положительные и отрицательные частицы отклоняются, и притом в разные стороны. Если твердое тело, внутри которого движутся заряды, изготовить в виде полоски и поместить в соответствующим образом направленное магнитное поле, то между краями пластинки возникнет напряжение. Схема опыта показана на рис. 2.8.
Каково же было удивление физиков, которые выяснили, что приходится встречаться с телами, которые при исследовании по показанной схеме ведут себя иногда так, как будто бы по проводу движутся положительные частицы, а в других случаях — так, как если бы переносчики электричества имели отрицательный знак. Дать название этому поведению нетрудно. В первом случае будем говорить о позитивной проводимости (p-тип), во втором — о негативной (n-тип). Но дело не в названии, а в объяснении существа дела. Ведь нет никакого сомнения в том, что внутри полупроводника движутся электроны. Как же выйти из противоречия? Как объяснить позитивную проводимость?