Представьте себе строй физкультурников. Один человек вышел по каким-то причинам из строя. Осталось свободное место. Хотя это звучит не очень эстетично, скажем так: образовалась «дырка». Для того чтобы выравнять строй, дана команда соседу «дырки» передвинуться на соседнее место. Но тогда, как совершенно ясно, образуется новое пустое место. И его можно заполнить, приказав следующему человеку занять место «дырки». Если физкультурники будут перемещаться справа налево, то «дырка» будет перемещаться слева направо. Вот эта схема и объясняет позитивную проводимость полупроводников.
Концентрация свободных электронов в полупроводниках очень мала. Поэтому уже само значение проводимости (вспомните формулу, которую мы недавно вывели для плотности тока) подсказывает нам, что большинство атомов полупроводника является не ионами, а нейтральными атомами. Но полупроводник все же не изолятор. Значит небольшое число электронов выпущено на свободу. Эти электроны будут двигаться, как в металле, и создадут негативную, т. е. электронную, проводимость. Но положительный ион, окруженный нейтральными атомами, находится в неустойчивом состоянии. Как только на твердое тело накладывается электрическое поле, положительный ион постарается «переманить» Электрон от своего соседа; так же точно поступит и соседний атом. Положительный ион вполне аналогичен «дырке». Перехватывание электронов может пересилить движение свободных электронов. Так возникает позитивная, или дырочная, проводимость.
Но может быть вам не нравится эта модель? Могу предложить другую. Как мы сказали, энергия частиц квантуется. Таков основной закон природы. Все явления, происходящие в полупроводниках, превосходно объясняются, если допустить, что, как и в атоме, электроны распределены по энергетическим уровням и в твердом теле. Но так как электронов в твердом теле очень много, то теперь уровни как бы сливаются в энергетические полосы (другое название — энергетические зоны).
Если взаимодействие электронов друг с другом слабое, то ширина зоны будет очень узкой. Поэтому на внутренние электроны практически не влияет то, что атомы, которым они принадлежат, входят в состав твердого тела.
А вот с внешними электронами дело обстоит иначе. Их уровни и образуют зоны. У разных тел ширина этих зон и «расстояния» между ними различны (надо говорить — энергетические промежутки; «расстояния» в этом контексте — это физический жаргон).
Эта картина превосходно объясняет деление твердых тел по электропроводности на металлы, полупроводники и изоляторы (рис. 2.9).
Когда зона полностью заполнена электронами и расстояние до верхней пустой зоны велико, то тело является изолятором. Если верхняя зона заполнена электронами частично, то такое тело — металл, ибо любое сколь угодно малое электрическое поле может перевести электрон на чуть более высокий энергетический уровень. Полупроводник характерен тем, что его верхняя зона отделена от ближайшей нижней небольшим промежутком. В отличие от изоляторов и металлов, в случае полупроводников тепловое движение способно переводить электроны с одной зоны в другую. В отсутствие поля число таких переходов вверх и вниз одинаково. Повышение температуры приводит лишь к тому, что концентрация электронов в верхней зоне растет.
Но что будет, когда на полупроводник будет наложено поле?
Теперь свободный электрон, находящийся в верхней зоне, начнет двигаться и даст вклад в негативную проводимость. Но равновесие переходов вниз и вверх будет нарушено. Поэтому в нижней зоне образуется «дырка», которая будет под действием поля двигаться в противоположную сторону. Такие полупроводники называют проводниками со смешанной (позитивно-негативной) проводимостью.
Зонная теория полупроводников является стройной теорией. Читатель не должен полагать, что описанная модель является искусственной и надуманной. Она просто и отчетливо объясняет основное отличие металла и полупроводника, а именно, их особое поведение с изменением температуры. Как говорилось в предыдущем параграфе, с возрастанием температуры электрическая проводимость металлов падает — электроны чаще сталкиваются с препятствиями. В полупроводниках возрастание температуры влечет за собой увеличение числа электронов и дырок, а значит увеличение проводимости. Этот эффект, как показывают расчеты, существенно превосходит уменьшение проводимости из-за столкновений с препятствиями.