Самый простой вид имеют силовые поля тел, имеющих форму сферы. Если две сферы или два заряда, которые можно представить в виде точек, сближать друг с другом, то поля наложатся. Напряженности поля складываются по правилу параллелограмма. В любой точке А можно выяснить, как направлена силовая линия и чему равна напряженность поля, производя построение, показанное на рисунке.
Если заряженные тела имеют форму пластин, то поле будет выглядеть так, как показано на рисунке внизу. Сближая пластины и увеличивая площадь пластин, можно достигнуть почти идеальной однородности поля; краевой эффект будет незначительным. Про две близко расположенные пластинки можно сказать, что они сгущают поле. Такое устройство называют конденсатором, что в переводе на русский язык и означает «сгуститель».
Как мы знаем, работа по перемещению тела под действием силы равна произведению силы на длину пути. Чтобы перенести заряд от одной пластины конденсатора к другой вдоль силовой линии, требуется работа, равная q∙Е∙l. Работа, необходимая для переноса единицы количества электричества, равна Е∙l.
Давайте соединим две пластины конденсатора проводником. При перенесении по проводнику количества электричества q выделяется энергия q∙U. Поскольку мы догадываемся, что нет принципиального различия между движением заряженного шарика в электрическом поле и перемещением электрической «жидкости» вдоль металлического проводника, то мы приравниваем эти два выражения энергии, затраченной полем:
q∙E∙l = q∙U.
Справедливость написанного выражения можно легко проверить, раздвигая пластины конденсатора и измеряя силу, действующую на пробный заряд.
Это измерение можно провести очень изящным способом, вовсе не прибегая к подвешиванию заряженного шарика на шелковую нить.
Всем хорошо известно, что легкие тела падают вниз значительно медленнее, чем тяжелые. Напомним, что именно по этой причине до опытов Галилея мудрецы античности и средних веков полагали, что скорость движения тела (а не ускорение) пропорциональна силе. Ошибочность этой точки зрения была наглядно продемонстрирована лишь тогда, когда посмотрели, как падают кусочки бумажки и металлический шарик в вертикальной трубке, из которой откачан воздух. Оказалось, что все тела набирают скорость одинаково быстро, т. е. падают на Землю с одним и тем же ускорением. Но сейчас нам как рае имеет смысл «включить» влияние воздуха, сопротивление которого приведет к тому, что легкий пустотелый металлический шарик, с помощью которого мы демонстрировали закон Кулона, будет падать вниз очень медленно.
Если заставить его падать тогда, когда он находится между пластинами конденсатора, то, меняя напряжение между пластинами, можно подобрать такое поле, которое остановит падение шарика. Равновесие осуществляется при условии, что сила тяжести равна силе поля, mg = qE. Из этого равенства можно найти значение напряженности поля и подтвердить правильность наших теоретических рассуждений.
Число силовых линий, проходящих через любую мысленную или реальную поверхность, находящуюся в электрическом поле, называется силовым потоком. Чему равен силовой поток, который проходит через замкнутую поверхность, охватывающую заряженные тела?
Сначала рассмотрим самый простой случай: поле создано одним маленьким шариком. Проведем сферу около шарика. Если радиус сферы R, то напряженность в любой точке поверхности сферы равна K∙q/R2. Площадь сферы равна 4πR2. Значит силовой поток, проходящий через сферу, будет равен 4π∙K∙q. Но ясно, что поток останется тем же, если мы возьмем любую другую поверхность.
Теперь усложним картину и допустим, что поле создается большим числом заряженных тел любой формы. Но ведь их можно мысленно разбить на крошечные участки, каждый из которых эквивалентен точечному заряду. Обведем систему зарядов произвольной поверхностью. Поток от каждого заряда равен 4π∙K∙q.
Совершенно естественным является предположение, что потоки будут арифметически складываться, а значит полный поток через любую замкнутую поверхность, охватывающую все заряды, пропорционален суммарному заряду тел, находящихся внутри этой поверхности.