Единица освещенности — люкс. Такую освещенность создает поток света, равный 1 лм, на площади в 1 м2.
Освещенность в безлунную ночь равна 0,0003 лк. Так что когда мы говорим: «ни зги не видно», то определяем освещенность, этой самой «зги». В лунную ночь освещенность равна — 0,2 лк. Чтобы читать, не напрягая глаз, требуется освещенность 30 лк. При киносъемке включают мощные прожекторы и доводят освещенность предметов до 10 000 лк.
Но мы ничего еще не сказали о приборах, которые служат для измерения, световых потоков и освещенностей. В настоящее время такие измерения — не проблема. Фактически мы действуем именно так, как надо было бы поступить, дав новое определение канделы. Мы измеряем энергию, падающую на фотоэлемент, а шкалу фотоэлемента градуируем в люксах с учетом кривой видности.
Существовавшие в прошлом веке фотометры работали по принципу сравнения яркостей двух освещенных смежных площадок. На одну из них падал свет, силу которого мы хотели измерить. С помощью нехитрых приспособлений световой поток уменьшали в известное число раз так, чтобы в конце концов смежные площадки были освещены одинаково.
Создание лазеров знаменует новую эпоху в развитии науки и техники. Трудно найти такую область знания, в которой стимулированное излучение не открыло бы новые возможности.
В 1947 г. Д. Габор предложил использовать когерентный свет для получения изображения объекта совершенно новым способом. Новая техника, получившая название голографии, коренным, образом отличается от фотографии. Голография становится возможной только лишь благодаря особенностям стимулированного излучения, отличающим его от обычного света.
Еще раз подчеркнем, что при лазерном излучении почти все фотоны совпадают по всем своим признакам — частоте, фазе, поляризации и направлению распространения. Лазерный луч размывается в ничтожной степени, т. е. можно получить чрезвычайно тонкий луч на больших расстояниях от источника, лазерному лучу свойственна очень большая когерентная длина (длина цуга волн). Благодаря последнему обстоятельству (оно-то и важно для голографии) возможна интерференция расщепленных лучей с большой разностью хода.
Верхняя часть рис. 2.9 поясняет технику получения голограммы.
Наблюдаемый объект освещается широким несильным (чтобы не повредить объект) лазерным лучом. Один и тот же луч рассеивается объектом и отражается зеркалом, которое создает так называемую опорную волну. Две волны накладываются. Происходит интерференция, картина которой фиксируется фотопластинкой.
Взгляните на рис. 2.10.
Сверху показан объект, а под ним — его «изображение». Мы не оговорились: эта сложная комбинация темных и светлых колец, называемая голограммой, действительно является изображением объекта, но только изображением скрытым. Голограмма содержит полную информацию об объекте, точнее — полные сведения об электромагнитной волне, рассеянной шахматными фигурками. Фотография не содержит таких всеобъемлющих сведений. Лучший фотоснимок точно передает все сведения об интенсивности рассеянных лучей. Но ведь волна, рассеянная любой точкой объекта, полностью характеризуется не только своей интенсивностью (амплитудой), но и фазой. Голограмма — это интерференционная картина, и каждая светлая или темная линия говорит нам не только об интенсивности, но и о фазе лучей, пришедших от объекта в соответствующие места фотопластинки.
Как и любую фотопластинку, голограмму проявляют, закрепляют и хранят сколько угодно времени. Когда нам захочется полюбоваться на снятый объект, мы облучим, как это показано на нижней части рис. 2.9, голограмму светом того же лазера, восстановив геометрическое расположение, имевшее место при съемке: луч лазера направим так, как шел луч, отраженный от зеркала. Тогда там, где находился объект, возникнет изображение предмета, в идеале тождественное той картине, которую видел глаз.
Теории получения голограммы мы не можем касаться. Основная идея состоит в том, что при освещении голограммы возникают рассеянные волны, обладающие теми же амплитудами и фазами, которые создали эту голограмму. Эти волны складываются в волновой фронт, тождественный тому волновому фронту, который создал голограмму. Происходит своеобразная реконструкция волны при освещении голограммы в тех же условиях, в которых освещался объект. Благодаря этому создается изображение объекта.