Поскольку длины волн рентгеновских лучей весьма малы, то частоты колебания электромагнитных волн велики. Эта значит, что рентгеновский квант hv несет большую энергию. Этой энергии не только достаточно для химических реакций, приводящих к почернению эмульсии фотопластинки и к созданию свечения фосфоресцирующих экранов (на это способны и световые лучи), но ее с избытком хватает и на то, чтобы разрушать молекулы. Другими словами, рентгеновские лучи ионизуют воздух и другие среды; через которые они проходят.
Теперь несколько слов о гамма-лучах. Этот термин мы используем, когда речь идет о коротковолновом излучении, возникающем при радиоактивном распаде. Забегая вперед, скажем, что гамма-лучи исходят из естественных радиоактивных веществ и создаются искусственными элементами. В ядерном реакторе, конечно, возникает гамма-излучение. Сильные и очень жесткие гамма-лучи возникают при взрыве атомной бомбы.
Ввиду того, что гамма-лучи могут иметь очень малую длину волны, коэффициент их поглощения может быть очень малым. Так, например, гамма-лучи, которые излучаются при распаде радиоактивного кобальта, способны пройти через десятки сантиметров стали.
Коротковолновое электромагнитное излучение, способное разрушать молекулы, в существенных дозах очень опасно для организма. Поэтому от рентгеновских и гамма-лучей нужна защита. Чаще всего для этой цели используют свинец. Стены рентгеновских кабинетов покрывают специальной штукатуркой, содержащей соли бария.
Гамма-лучи, так же как и рентгеновские, могут быть использованы для просвечивания. Обычно прибегают к гамма-лучам радиоактивных веществ, которые являются «золой» ядерного горючего. Их достоинством по сравнению с рентгеновскими лучами является большая проникающая способность, но главное — это возможность использовать в качестве источника излучения маленькую ампулку, которую можно поместить в места, недоступные для рентгеновской трубки.
В 1912 г. Рентген был руководителем кафедры физики Мюнхенского университета. Проблемы, касающиеся природы икс-лучей, обсуждались на этой кафедре неустанно. Надо сказать, что Рентген, будучи сам физиком-экспериментатором, относился с большим уважением к теории. На кафедре физики Мюнхенского университета трудилось много талантливых теоретиков, которые ломали себе голову над тем, что представляют собой рентгеновские лучи.
Разумеется, были сделаны попытки выяснить природу рентгеновских лучей, исследуя их прохождение через дифракционную решетку. (Напомним читателю, что представляет собой дифракционная решетка, с помощью которой однозначно доказывается волновая природа света и вдобавок весьма точно определяется длина волны того или иного излучения.
Один из способов изготовления такой решетки состоит в том, что на стеклянную пластинку, покрытую слоем алюминия, мягким резцом из слоновой кости при помощи специальных машин наносятся штрихи. Штрихи должны отстоять на строго одинаковых расстояниях друг от друга. Хорошая решетка должна обладать малым периодом (общая ширина щели и непрозрачного промежутка) и большим числом штрихов. Удается довести это число до сотен тысяч, при этом на 1 мм приходится более тысячи штрихов.
При помощи линзы сильный точечный источник света дает параллельный пучок света, который падает на решетку под прямым углом. Из каждой щели лучи выходят во все стороны (иными словами — каждая щель становится источником сферической волны). Но лишь в избранных направлениях волны от всех щелей будут синфазны. Для взаимной поддержки требуется чтобы разность хода равнялась целому числу длин волн. Сильные лучи пойдут в направлениях под углом а, подчиняющихся условию
а∙sin α = n∙λ,
где n — целое число, а — период решетки. Читатель легко выведет эту формулу без нашей помощи.
Целое число n называют порядком спектра. Если на решетку падает монохроматический луч, то мы получим в фокальной плоскости окуляра несколько линий, разделенных темными промежутками. Если свет состоит из волн разной длины, то решетка создает несколько спектров — первого, второго и т. д. порядков. Каждый последующий спектр будет более растянут, чем предыдущий.
Поскольку длина волны света того же порядка, что-и расстояние между щелями, то дифракционные решетки разлагают свет (притом не только видимый, но также ультрафиолетовый и в особенности хорошо инфракрасный) в спектры. С их помощью можно проводить детальный спектральный анализ.