Выбрать главу

В каком виде выдает физик — специалист в области рентгеноструктурного анализа — сведения о структуре вещества, которые нужны химику? Представление об этом дает рис. 3.3, на котором показана очень простая структура вещества, называемая барбитуратом аммония.

Определение структуры подобной сложности в настоящее время является «детской» задачей. Такую структуру определит автомат без всякого вмешательства исследователя. Электронно-вычислительная машина может выдать результат и в виде чисел (значений координат атомов), и в виде картинок, похожих на приведенною. Атомы разного химического сорта обозначены кружками разных размеров. Но если исследователь желает, то ЭВМ выдаст картину электронной плотности. Каждый атом изображается так как географы обрисовывают линиями равных высот горные пики.

Только в нашем случае замкнутые линии — это не высоты, а кривые, указывающие на плотность электронов в данном месте. Вершиной «горного пика» является центр атома.

Приведенный рисунок — это крошечная доля того вклада, который внес в науку описанный нами метод. Успех метода очень велик. На сегодня определены структуры более 15 тысяч кристаллов, в том числе несколько десятков структур белков, молекулы которых состоят из многих тысяч атомов.

Определение структуры сложных молекул закладывает фундамент биологической химии и биологической физики. Эти науки находятся сейчас в бурном периоде развития. От них ждут открытия секретов жизни, болезней и смерти.

Рентгеноструктурный анализ, несмотря на свой, солидный, семидесятилетний возраст, остается на передней линии фронта науки.

СПЕКТР РЕНТГЕНОВСКИХ ЛУЧЕЙ

В предыдущем параграфе мы походя упомянули, что можно встретиться с «белым» спектром и с монохроматическим лучом. Каким образом выяснить характер спектра жесткого электромагнитного излучения? Когда он бывает «белым», а в каких случаях монохроматическим?

Если диафрагмировать рентгеновские или гамма-лучи, исходящие из какого-либо источника (т. е, по ставить на пути излучения две заслонки с маленькими отверстиями), и заставить пучок падать на кристалл, то в наиболее общем случае возникнут несколько лучей, отраженных от плоскостей, оказавшихся в положении, удовлетворяющем уравнению Брэгга-Вульфа. Если установить кристалл так, чтобы какая-то его плоскость (дающая сильное отражение) совпадала с осью вращения специального прибора (рентгеновского спектрографа), а затем поворачивать кристалл так, чтобы эта плоскость подставлялась под падающий луч последовательно под всеми углами θ, то при каждом положении кристалла будет отражаться составляющая спектра определенной длины волны. «Принимать» эту отраженную волну мы можем либо с помощью ионизационного счетчика, либо можем ловить луч на фотопленку. Этим способом удается, во-первых, создать монохроматический луч любой длины волны, содержащийся в спектре излучения, и, во-вторых, исследовать спектр любого излучения.

Типичный спектр рентгеновской трубки с анодом из молибдена показан на рис. 3.4 (напряжение 35 кВ).

Можно сразу же прийти к заключению, что имеются какие-то две причины, которые приводят к созданию рентгеновского спектра. Действительно, мы видим, что наблюдающийся спектр является наложением острых пиков сплошную кривую. Конечно, происхождение этих пиков отличается от происхождения сплошной кривой.

Ораву же после того, как явление дифракции рентгеновских лучей было открыто, начались исследования рентгеновских спектров. Было установлено следующее. Сплошной спектр не характерен для материала анода и зависит от напряжения. Его особенностью является то, что он резко обрывается при некоторой минимальной длине волны. В сторону длинных волн, пройдя максимум, кривая спадает плавно, и «конца» спектра не видно.

Увеличивая напряжение на рентгеновской трубке, исследователи показали, что интенсивность сплошного спектра растет, а граница сдвигается в сторону коротких волн. При этом было установлено следующее очень простое равенство для граничной длины волны:

λмин = 12,34/U

На квантовом языке полученное правило формулируется без труда. Величина eU — это энергия, которую набирает электрон в своем путешествии от катода к аноду. Естественно, что электрон не может отдать энергии больше, чем эта величина. Если он передаст всю энергию на создание рентгеновского кванта (eU = hv), то после подстановки значения констант мы и получим (написанное выше- равенство (λ в ангстремах, U в киловольтах).