Поскольку возникает сплошной спектр, то отсюда следует, что электроны не обязательно отдают всю свою энергию на создание рентгеновских лучей. Опыт показывает, что большая часть энергии электронного пучка превращается в тепло. К. п. д. рентгеновской трубки очень низкий. Анод сильно разогревается, и его приходится охлаждать потоком воды, подаваемым внутрь анода.
Существует ли теория, объясняющая возникновение сплошного спектра рентгеновских лучей? Существует. Вычисления, которые мы, к сожалению, не можем провести, показывают, что из общих законов электромагнитного поля (из уравнений Максвелла), о которых у нас шла речь в 3-й книге, строго следует такой факт: если электроны тормозятся, то это ведет к возникновению сплошного спектра рентгеновских лучей. Соударение с твердым телом является несущественным обстоятельством. Можно затормозить электроны противополем и получить сплошное рентгеновское излучение без участия в этой игре материального анода.
Есть и еще одна возможность встретиться со сплошным рентгеновским спектром. Мы вспоминаем, что сплошной электромагнитный спектр излучается раскаленными телами. В земных условиях нам не приходится сталкиваться с рентгеновским спектром такого происхождения, ибо (сравните формулу, приведенную на с. 12) при самой высокой температуре раскаленного тела (несколько тысяч кельвинов, — ни одно твердое тело не выдерживает температуры большой) длина волны теплового излучения будет близка к половине микрометра.
Но не надо забывать о существовании плазмы. В искусственной плазме, создаваемой в земных условиях, и в звездах могут быть получены температуры, равные миллионам кельвинов. Тогда тепловой спектр электромагнитного излучения обнимет и рентгеновские лучи. Рентгеновские лучи, приходящие из космоса, помогают решать увлекательные задачи астрофизики.
Перейдем теперь к разговору об острых пиках, накладывающихся на кривую сплошного спектра. В отношении этих лучей было доказано как раз обратное правило — обратное по отношению к закону сплошного спектра. Места нахождения пиков, т. е. их длины волн, однозначно определяются материалом анода. Поэтому это излучение носит название характеристического.
Его происхождение непредвзято объясняется квантовой моделью атома. Электронные лучи рентгеновской трубки способны проникнуть внутрь атома вещества анода и вышибить из него электроны, которые находятся на самых низких энергетических уровнях. Как только освобождаемся низкий уровень, на него переходит какой-либо из электронов, более отдаленный от центра атома. Происходит излучение энергии в соответствии с основным квантовым законом Em — En = h∙v. Энергетические уровни расположены по-разному у разных атомов. Поэтому естественно, что возникающие спектры будут характеристическими.
Поскольку линии характеристического спектра наиболее сильные, то их и используют для рентгеноструктурного анализа. Сплошной спектр лучше всего «отсеять», т. е. перед тем, как заставить луч падать на изучаемый кристалл, надо отразить его от кристалла-монохроматора.
Поскольку спектры различных элементов характеристичны, то разложение луча в спектр можно использовать для целей химического анализа. Такой анализ называется рентгеноспектральным. Есть целый ряд областей, например изучение редкоземельных элементов, где рентгеноспектральный анализ буквально незаменим. Интенсивности спектральных рентгеновских характеристических линий позволяют с большой точностью определить процентное содержание того или иного элемента в смеси.
Нам остается сказать несколько слов о спектрах гамма-лучей. В земных условиях мы имеем дело с гамма-лучами, которые возникают при радиоактивном распаде, о котором у нас речь впереди. Радиоактивный распад может сопровождаться, а может и не сопровождаться гамма-излучением. Но какого бы типа ни был радиоактивный распад, спектр гамма-излучения будет характеристическим.
Если рентгеновские характеристические лучи возникают тогда, когда атом «спускается» с верхнего энергетического этажа на нижний, то гамма-лучи появляются в результате аналогичного перехода атомного ядра.
Гамма-спектры радиоактивных превращений хорошо изучены. Существуют таблицы, в которых можно найти точные данные о длине волны гамма-лучей, возникающих при альфа- или бета-превращениях того или иного радиоактивного изотопа.