Выбрать главу

В металловедении мы имеем дело в основном с дифракционными кольцами, расположенными под большими углами, поскольку они состоят из кристаллитов. Атомы кристаллитов образуют правильные решетки с ячейками, размеры которых имеют порядок единиц ангстремов.

В тех случаях, когда объектом исследования являются вещества, построенные из макромолекул, а к ним относится множество природных веществ, таких, скажем, как целлюлоза или ДНК, а также синтетические полимерные вещества, популярные названия которых — полиэтилен, нейлон, капрон и т. д. — превосходно знакомы любому читателю, не имеющему ни малейшего представления о химии, — в этих случаях мы сталкиваемся с чрезвычайно интересным обстоятельством. Иногда мы получим рентгенограммы, которые покажут нам кольца лишь большого диаметра. Иными словами, мы встретимся с таким же рассеянием под большими углами, как в металлах. А кой-когда мы не обнаружим колец большого диаметра, но увидим наличие дифракционных лучей, лишь незначительно отклонившихся от первичного направления. И, наконец, возможны и такие случаи, когда вещество обнаружит рентгеновское рассеяние как под большими, так и под малыми углами.

Малоугловым называют обычно рассеяние (я опять повторю, что деление на малоугловое рассеяние и рассеяние под большими углами несколько условно) в диапазоне от нескольких минут до 3–4°. Естественно, чем меньше угол дифракции, тем больше период повторяемости структурных элементов, которые эту дифракцию создали.

Рассеяние под большими углами обусловлено порядком в расположении атомов внутри кристаллитов. Что же касается малоуглового рассеяния, то оно связано с упорядоченным расположением довольно больших образований, которые называются надмолекулярными. Может случиться и так, что внутри этих образований, состоящих из сотен или тысяч атомов, нет никакого порядка. Но если такие крупные системы образуют одномерные, двумерные или трехмерные решетки, то рентгеновское малоугловое рассеяние расскажет об этом. Чтобы у читателя был зрительный образ, я предлагаю ему представить себе аккуратную конструкцию из мешков с картофелем. Чрезвычайно интересно и, вероятно, имеет глубокий смысл то обстоятельство, что мы встречаемся с таким «мешочечным» порядком в очень многих биологических системах. Например, длинные молекулы, образующие ткань мускулов, расположены так аккуратно, как карандаши кругового сечения в пачке. С исключительно высокой упорядоченностью этого типа мы сталкиваемся, как показывает рентгеновское малоугловое рассеяние, в мембранах клеток, в таких белковых системах, как вирусы, и т. д.

В теории дифракции существует интересная теорема, которую я не стану доказывать, но думаю, что она покажется естественной читателям. Можно строго показать, что вид дифракционной картины остается тем же самым, если в объекте, дающем дифракцию, поменять местами отверстия и непрозрачные промежутки. Иногда эта теорема заставляет исследователя помучиться. Это бывает тогда, когда он с одинаковым успехом может объяснить рентгеновское рассеяние как порами внутри вещества, так и чужеродными включениями. Изучение пор — их размера, формы, количества на единицу объема — представляет большой интерес для практиков. От этих особенностей структуры: синтетических волокон зависит в сильнейшей степени то, как они будут окрашиваться. Нетрудно догадаться, что неравномерное распределение пор явится причиной неравномерной окраски. Получится некрасивая ткань. Из всего сказанного достаточно очевидно, что рентгенография материалов является не только методом исследования вещества, но и методом технического контроля самых различных производств.

Глава 4

Обобщения механики

РЕЛЯТИВИСТСКАЯ МЕХАНИКА

Механика Ньютона, которую мы изложили в 1-й книге, является величайшим достижением человеческого гения. С ее помощью рассчитываются пути планет, траектории ракет, поведение механизмов. Развитие физики в XX веке показало, что законы ньютоновской механики имеют два ограничения: они становятся непригодными, когда речь идет о движении частиц малой массы; они перестают служить нам верой и правдой, когда речь идет о движении тел со скоростями, близкими к скорости света. Для малых частиц механику Ньютона заменяют так называемой волновой механикой, для быстро движущихся тел — релятивистской механикой.