Подчеркнем, что уравнение Эйнштейна Е = m∙с2 относится не только к внутриядерной энергии. Уравнение универсально. Но здесь дело обстоит совершенно так же, как с часами космонавтов. Большей частью соотношение между энергией и массой не может быть проверено. Действительно, если нагреть 1 т молибдена на 1000 К, то масса возрастет на 3 миллионных доли грамма. Только огромная величина внутриядерных сил позволила убедиться в правильности уравнения Е = m∙с2.
Полезно, пожалуй, предупредить читателя об очень распространенной небрежной формулировке этого замечательного уравнения. Говорят: масса превращается в энергию; или еще хуже: материя превращается в энергию. На самом же деле формула Е = m∙с2 говорит следующее: какие бы взаимные превращения разных видов материи ни происходили, произошедшему в системе изменению энергии соответствует эквивалентное изменение массы. Энергия и масса являются двумя однозначно связанными характеристиками материи.
Желание добраться до элементарных кирпичей, из которых построен мир, старо, как мир. Но долгие столетия этот предмет был подвластен только схоластическим рассуждениям мудрецов. Как только появились реальные возможности разрушать молекулы, атомы, атомные ядра, физики принялись за эту работу с вдохновением и настойчивостью. Работа эта не прекращается и по сей день, и, признаемся, пока что конца ей не видно.
Ясно, что для того, чтобы получить ответ на вопрос, из чего построен мир, надо разрушать частицы. Для этого нужны «снаряды», и чем большей энергией будут они обладать, тем больше надежды раскрыть эту тайну природы.
История производства быстрых частиц началась в 1932 г., когда сотрудники Резерфорда построили установку для получения протонов, которые разгонялись до энергий 500 кэВ. Затем последовали циклотроны, позволившие достигнуть энергий протонов, которые требовалось измерять уже мегаэлектронвольтами (напомним, что мега — миллион). На следующем этапе был изобретен синхротрон, позволивший разгонять протоны до миллиарда электронвольт. Началась эра гигаэлектронвольтов (гига — миллиард). Но теперь уже запроектированы машины, в которых счет пойдет на тысячи миллиардов электронвольт. В частности, физики, собиравшиеся в 1975 г. на международную конференцию (она происходила в Серпухове, где установлена одна из мощнейших машин этого типа), полагали, что надо было бы строить кольцевую машину с диаметром 16 км.
Но у читателя уже вертятся на кончике языка вопросы. В чем принцип действия таких машин? Почему им надо придавать кольцевую форму и, наконец, для чего они нужны?
По сути дела, ускорителем частиц является любой вакуумный прибор, к концам которого подведено высокое напряжение. Кинетическая энергия разогнавшейся до большой скорости частицы равна (впрочем, мы не в первый раз приводим эту формулу, но в этом беды нет: читатель ее тогда наверняка запомнит)
m∙v2/2 = e∙U
И рентгеновские, и телевизионные трубки можно назвать ускорителями.
Но на этом принципе особо больших скоростей не получишь. Термин «ускоритель» применяется тогда, когда речь идет о машинах, разгоняющих частицы до скоростей, близких к скорости света. Для этой цели надо заставить частицу проходить последовательно много полей. Сразу же легко сообразить, что линейный ускоритель малоудобен, ибо для того, чтобы получить какие-то жалкие десятки тысяч электронвольт, уже нужны пути, равные многим сантиметрам. Для достижения десяти миллиардов электронвольт нужна длина порядка десятка километров.
Нет, такое лобовое, решение проблемы не годится! В 1936 г. Эрнест Лоуренс (1901–1958) положил начало строительству современных кольцевых ускорителей, которые он назвал циклотронами. В одной установке объединяется ускорение частицы электрическим полем и ее многократное возвращение к ускоряющему промежутку с помощью магнитного поля.
Ускоритель Лоуренса похож на консервную банку, разрезанную на две части по диаметру. К двум половинкам прикладывается быстропеременное напряжение. Заряженное частицы ускоряются в те моменты, когда они проходят расстояния, разделяющие половинки прибора. Внутри «консервной банки» мы заставляем частицы двигаться по окружности, накладывая на прибор магнитное поле; линии индукции которого перпендикулярны ее дну. Как известно, в этом случае заряженная частица описывает окружность радиуса