Выбрать главу

Гидрогенератор Красноярской ГЭС (мощностью 500 МВт) имеет частоту вращения 93,8 об/мин, диаметр его ротора 16 м, а масса 1640 т. Для Саяно-Шушенской ГЭС проектируется генератор на 650 МВт.

Как я уже говорил, использование гидроэнергии не обходится даром для окружающей среды. Но тем не менее преимущество ГЭС перед тепловыми станциями не подлежит сомнению. Прежде всего, ГЭС не потребляет топлива, запасы которого ничтожны. Но у тепловых электростанций имеется и еще один крупнейший недостаток. При превращении энергии топлива в электрическую, неизбежно значительная часть энергии уходит впустую.

Тем не менее что-нибудь около 80 % электроэнергии вырабатывается на тепловых станциях при помощи турбогенераторов, в которых силой является давление пара.

Для того чтобы к. п. д. генератора был большим, необходимо елико возможно увеличить температуру пара. Понятно, что этого можно достигнуть, лишь одновременно увеличивая давление. На современных ТЭС мощностью 200–300 МВт в турбины пускается пар, имеющий температуру 565 °C и давление 24 МПа.

Но почему надо стремиться к высоким температурам? Дело заключается в следующем. В паровой турбине мы в конечном счете используем то же самое явление, которое заставляет подпрыгивать неплотно пригнанную крышку чайника, когда в нем закипает вода. Иными словами, в паровой турбине происходит превращение тепловой энергий в механическую, а затем уже механической в электрическую. Так вот, при первом превращении (это можно строго доказать) теряется энергии не меньше, чем доля, равная отношению температуры окружающей среды к температуре пара (в кельвинах).

Весьма печально, что в современных устройствах для извлечения энергии приходится проходить через «тепловую ступень». Такой переход всегда связан с огромной потерей энергии, и идеальной электростанцией будущего станет такое предприятие, где энергия любого происхождения будет превращаться в электрическую энергию непосредственно. Пока эта важнейшая проблема не решена, нам остается лишь одно: стремиться к наиболее высоким температурам пара, газа или плазмы.

Как это ни сложно, но все же удается добиться на тепловых электростанциях к. п. д. около 40 %. Паротурбинный генератор — это электрическая машина с горизонтальным валом. Ротор изготовляется вместе с концами вала в виде одной поковки из специальной турбороторной стали, так как механические напряжения в нем из-за большой частоты вращения (3000 об/мин) достигают предельно допустимых для современных материалов значений. По той же причине ротор не имеет явно выраженных полюсов. На части его цилиндрической поверхности имеются пазы, в которые укладывается обмотка возбуждения. В пазах статора уложена трехфазная обмотка переменного тока.

По причине больших механических напряжений диаметр poтopa ограничен, поэтому для получения достаточной мощности приходится машину вытягивать в длину.

Первые отечественные турбогенераторы мощностью 500 кВт шли изготовлены в Ленинграде на заводе «Электросила» в 1925 г. А в 1964 г. «Электросила» выпустила турбогенератор мощностью, превышающей в 1000 раз свой первенец — 500 000 кВт.

Стремление получить большую мощность от одной машины без увеличения и без того уже огромных размеров привело к очень значительному усложнению. Так, для уменьшения потерь в обмотке статора ее выполняют из полых медных проводников, внутри которых пропускают воду. Обмотка возбуждения охлаждается водородом под давлением около 4 атм. Применение водорода, имеющего в 14 раз меньшую плотность, чем воздух, позволило увеличить мощность турбогенераторов на 15–20 %.

В Плане развития народного хозяйства на 1981–1985 гг. перед электротехнической промышленностью стоит задача освоить производство турбогенераторов мощностью 1–1,5 млн. кВт для тепловых и атомных электростанций.

Одна из наиболее интересных в мире электростанций создана в Советском Союзе. Называется она У-25 и дает в электросеть около 7000 кВт электроэнергии. Это самая большая в мире установка для генерирования электроэнергии методами магнитогидродинамики; сокращенно такие установки называют МГД. МГД-генератор не имеет вращающихся частей.

Идея, лежащая в основе действия этого интересного генератора, крайне проста. Поток ионов, обладающих значительной кинетической энергией (плазменная струя), проходит через магнитное поле наперерез линиям магнитной индукции. На ионы действует сила Лоренца. Напряженность индуцированного электрического поля, как нам известно, пропорциональна скорости ионного потока и величине магнитной индукции. Направлена э. д. с. перпендикулярно движению ионов. В этом направлении и возникает электрический ток, который замыкается через внешнюю нагрузку. Электроды, принимающие ток, находятся в непосредственном контакте с плазмой.