Электрическая энергия возникает за счет падения энергии плазменной струи. МГД-генератор позволяет довести к. п. д. электростанции до 60 % и более.
Критическим фактором при получении дешевой энергии от МГД является магнитное поле в канале. Это поле должно быть очень сильном. Обычный электромагнит с медной катушкой может создать такое поле, но он будет большим, сложным по конструкции и дорогостоящим; кроме того, он сам будет потреблять много электроэнергии. В связи с этим обратились к новой концепции конструирования магнитов со сверхпроводящей обмоткой. Такой магнит может создавать необходимое магнитное поле при небольшой затрате энергии и незначительном нагреве. Как показывают расчеты, большие затраты по получению температур, близких к абсолютному нулю, оправдывают себя.
Из беглого обзора, сделанного на предшествующих страницах, мы видим, что традиционные способы увеличения производства анергии еще не исчерпаны. Однако вряд ли можно признать, что человечество долгое время будет следовать этому пути.
Не говоря уже о том, что запасы топлива и возможности использования гидроэнергии близятся к концу, нельзя забывать о значительном влиянии на окружающую нас среду строительства новых электростанций. Экологи предупреждают о необходимости весьма осторожно относиться к вмешательству в жизнь рек. Обращают внимание энергетиков на огромные количества золы, которые выбрасываются в атмосферу при сгорании топлива. За год земная атмосфера принимает 150 млн. тонн золы, около 100 млн. тонн серы. Особенно тревожно увеличение в атмосфере количества углекислого газа. Каждый год оно возрастает на 20 млрд. тонн. За последние 100 лет содержание углекислого газа в атмосфере возросло на 14 %.
Имеются две причины этого роста: разрушение растительности на Земле и, самое главное, выбрасывание в атмосферу «газовой золы», образующейся при горении обычного топлива. Этот непрекращающийся рост может привести к пагубным последствиям, из которых наиболее важное — возрастание температуры атмосферы на 1,5–3 Кельвина, казалось бы, небольшое повышение температуры! Однако оно может привести к необратимому плавлению льдов, находящихся на полюсах. Климатологи полагают, что предельно допустимое дальнейшее возрастание количества углекислого газа в атмосфере не Должно превзойти нескольких десятков процентов.
Как мы уже сказали, атомная электростанция относится к классу ТЭС. Отличие состоит в способе создания водяного пара, который направляется на лопатки турбины. С полным основанием можно термин «ядерный реактор» заменить словами «ядерный котел», подчеркивая этим родство, способов получения энергии.
Ядерному реактору, обычно придают форму цилиндрического здания. Стенки его должны быть очень толстыми и сделаны из материалов, поглощающих нейтроны и гамма-излучение. Реактор, который дает что-нибудь около 1000 МВт электрической энергии, в зависимости от используемого топлива, метода замедления нейтронов, способа отвода тепла может иметь различные размеры. Но во всех случаях эти размеры внушительные. Высота может достигать высоты 5—10-этажного дома, а диаметр будет порядка десяти метров.
Ядерная энергетика начала развиваться сразу же после окончания второй мировой войны. В Советском Союзе эти важнейшие исследования возглавил замечательный ученый и организатор Игорь Васильевич Курчатов.
ИГОРЬ ВАСИЛЬЕВИЧ КУРЧАТОВ (1903–1960) — видный советский физик, замечательный организатор, возглавлявший работу по разработке атомной проблемы в Советском Союзе. Начал свою научную деятельность в области физики твердого тела, создал учение о сегнетоэлектриках. В начале 30-х годов занялся исследованиями в области физики атомного, ядра. Под его руководством проведены важные работы в области изучения ядерной изомерии, резонансного поглощения нейтронов, искусственной радиоактивности.
И у нас, и за границей были испробованы самые различные конструкции. Прежде всего решается вопрос об изотопном составе используемого урана или другого ядерного горючего. Далее инженер должен решить, в каком виде он желает использовать горючее: в виде раствора солей урана или в виде твердых кусков. Твердому горючему элементу может быть придана различная форма. Можно работать с брусками, но более подходящими являются длинные стержни. Существенную роль играет геометрия расположения топливных элементов. Инженерный расчет поможет найти наиболее целесообразное расположение контрольных стержней, поглощающих нейтроны. Их перемещение (конечно, автоматическое) должно обеспечить нужное значение коэффициента размножения нейтронов.