Выбрать главу

Различие в поведении медленных (тепловых) нейтронов и быстрых нейтронов позволяет разбить типы, реакторов на две категории, а именно реакторы с замедлителем нейтронов и бридерные реакторы.

Реактор, в котором предусмотрено замедление нейтронов, может работать на природном уране. Количество замедлителя должно быть таким, чтобы не дать возможность значительному числу нейтронов поглощаться ядрами урана-238. А ведь этих ядер примерно в 140 раз больше, чем ядер урана-235. Если количество замедлителя будет малым, то нейтроны не будут успевать уменьшить свою скорость до тепловой, поглотятся ядрами урана-238 и цепная реакция не сможет продолжаться. Реактор, работающий на природном уране или уране, незначительно обогащенном ураном-235, будет все же создавать новое горючее — плутоний. Но его будет образовываться гораздо меньше, чем «сгорающих» ядер.

Пока что на атомных электростанциях используют реакторы на тепловых нейтронах. Наиболее часто применяют четыре типа реакторов: водо-водяные с обычной водой в качестве замедлителя и теплоносителя; графито-водяные с водяным теплоносителем и графитовым замедлителем; реакторы, в которых замедлителем является тяжелая вода, а теплоносителем обычная вода, и, наконец, графито-газовые реакторы.

Причина того, что специалисты в области атомной энергетики сосредоточили свое внимание на реакторах, работающих на тепловых нейтронах, видимо в том, что обогащение урана изотопом 235 является трудной задачей. Но надо помнить замечание, сделанное нами выше: используя в качестве горючего один лишь изотоп уран-235, мы лишаем себя возможности пустить в дело огромные запасы потенциального ядерного горючего.

В настоящее время намечается тенденция к переходу на ядерные реакторы другого типа, работающие на сильно обогащенном топливе и не использующие замедлителя нейтронов.

Допустим, что в котле имеется смесь, в которой на одну часть урана-235 приходится одна часть урана-238. В этом случае число нейтронов, выбывающих из цепной реакции благодаря захвату ураном-238, может быть бóльшим числа нейтронов, расщепляющих ядра урана-235 и продолжающих цепную реакцию. Такой реактор и будет бридерным. В зависимости от геометрии расположения стержней или кирпичей ядерного активного, и потенциального горючего, можно создать бридерный реактор с самым различным процентным отношением этих двух видов топлива и с разным коэффициентом воспроизведения.

Для того чтобы читатель имел представление о параметрах ядерных реакторов, приведем, два примера.

Рис. 6.2 дает общее представление об устройстве ядерного реактора, который в настоящее время используется на американских подводных лодках.

Охладителем является обычная вода. Поскольку обычная вода захватывает нейтроны примерно в 600 раз более эффективно, чем тяжелая вода, то такой реактор может работать только на уране-238, обогащенном ураном-235. Вместо природной доли 0,72 % в топливе этих реакторов содержится от 1 до 4 % урана-235. Реактор, способный давать 1100 МВт электрической энергий, имеет диаметр около 5 м, высоту 15 м и толщину стенок, около 30 см (5-этажный дом!). Если в такой реактор загрузить 80 т окиси урана с содержанием 3,2 % урана-235, то он будет работать 10–12 месяцев (после чего надо менять стержни). Вода в реакторе нагревается да 320 °C. Она циркулирует под давлением около 300 атм. Горячая вода превращается в пар и подается на лопасти турбины.

Остановимся теперь вкратце на французском проекте мощного бридерного реактора, получившем название Суперфеникс.

Предполагается в качестве топлива использовать смесь плутония-239 и урана-238. Замедлитель не будет использоваться, так что нейтроны не теряют скорости от момента своего рождения во время распада ядра до встречи с другим атомным ядром горючего материала.

То, что реактор работает на быстрых нейтронах, приводит к большой компактности. Ядро реактора не превосходит 10 м3. Таким образом, может выделяться большое количество тепла в единице объема.

Отвод тепла нельзя производить водой, поскольку она замедляет нейтроны. Для этой цели можно использовать жидкий натрий. Натрий плавится при температуре 98 °C и кипит при 882 °C при атмосферном давлении. Температура жидкого натрия по техническим причинам не должна быть выше 550 °C. Поэтому нет необходимости в повышении давления охлаждающей жидкости, к чему прибегают в тех случаях, когда охладителем является вода.