Выбрать главу

Интеллектуальная необходимость в существовании такой модели привела Эйнштейна к следующему фундаментальному заключению. Геометрия Евклида, которой мы с успехом пользуемся в обыденной жизни, несправедлива, когда речь идет о непредставимо колоссальных расстояниях, с которыми мы сталкиваемся при изучении звездного мира. Отказ от геометрии Евклида означает отказ от наглядных моделей Вселенной. Ну что же, не в первый раз нам расставаться с возможностью наглядно представить себе окружающий нас мир.

Простившись с геометрией Евклида, мы можем предложить модель Вселенной, которая одновременно является замкнутой и в то же время не имеет ни границ, ни центра. В такой модели все точки пространства будут равноправными.

На первый взгляд может показаться, что Эйнштейн требует от нас очень большой жертвы. Мы так привыкли, что две параллельные линии никогда не пересекаются, что сумма квадратов катетов равна квадрату гипотенузы. Привыкли… Но, позвольте, вспомните уроки географии. На глобусе, изображающем земной шар, линии широт параллельны. А на географической карте? Вы вправе спросить, на карте какого типа. Ибо географические карты строятся различными способами. Если изобразить земной шар в виде двух полушарий, то параллели перестанут быть параллельными. Если прибегнуть к так называемой прямоугольной проекции, то расстояния между широтами перестанут быть равными. Какая уж тут геометрия Евклида!

Если желаете, то можете убедиться, что теорема Пифагора потерпела крах. На карте важнейших авиалиний я изобразил треугольник (рис. 7.2) Москва-Кейптаун-Лондон. Выбрал его потому, что случайно он на карте в точности прямоугольный. Значит, сумма квадратов катетов должна равняться квадрату гипотенузы. Как бы не так. Считайте: расстояния Москва-Лондон 2490 км, Москва-Кейптаун 10130 км и Лондон-Кейптаун 9660 км. Не работает теорема, не годится наша геометрия для географической карты.

Законы геометрии на плоскости, изображающей земной шар, отличаются от «обычных».

Рассматривая географическую карту полушарий, мы видим, что у нее есть «края». Но ведь это иллюзия. На самом деле, двигаясь по поверхности земного шара, мы никогда не доберемся до несуществующего «края Земли».

Существует анекдот. Маленький сын Эйнштейна спрашивает отца: «Папа, почему ты так знаменит?» Отец отвечает: «Мне повезло, я первый обратил внимание на то, что жук, ползая по глобусу, может обогнуть его по экватору и вернуться в исходную точку». Конечно, в такой форме открытия нет. Но перенести это соображение на трехмерное пространство Вселенной; утверждать, что она конечна и замкнута наподобие двумерной поверхности, ограничивающей глобус; сделать из этого вывод, что все точки Вселенной совершенно равноправны в том же смысле, что и все точки поверхности глобуса, — разумеется, это требует исключительной интеллектуальной смелости.

Отсюда такое заключение. Если мы, земляне, наблюдаем, что все галактики от нас разбегаются, то и житель планеты любой звезды будет видеть ту же картину. Он придет к тем же заключениям о характере движения звездного мира и измерит те же самые скорости галактик, что и обитатель Земли.

Модель Вселенной, предложенная Эйнштейном в 1917 г., является естественным следствием разработанной им так называемой общей теории относительности (ту часть теории, которую мы изложили в гл. 4, называют специальной).

Однако Эйнштейн не предполагал, что замкнутая Вселенная может изменять свои размеры. Это показал в 1922–1924 гг. советский ученый Александр Александрович Фридман (1888–1925). Оказалось, что теория требует либо расширения Вселенной, либо чередующихся расширений и сжатий. Во всяком случае она не может быть статической. Мы имеем право принять любую из этих двух точек зрения, т. е. либо предположить, что мы живем сейчас в эпоху расширения Вселенной, которой предшествовали чередовавшиеся сжатия и расширения, либо допустить, что Вселенная некое время тому назад (его можно рассчитать, оно оказывается равным нескольким десяткам миллиардов лет) представляла собой «космическое яйцо», которое взорвалось и с тех пор расширяется.