Выбрать главу

Величину, характеризующую степень порядка и связанную простой формулой с числом способов создания состояния, физики назвали энтропией. Формулы приводить не будем, скажем лишь, что чем больше вероятность, тем больше и энтропия.

Закон природы, который мы сейчас обсуждаем, говорит: все естественные процессы происходят так, что вероятность состояния возрастает. Другими словами тот же закон природы формулируется как закон возрастания энтропии.

Закон возрастания энтропии - важнейший закон природы. Из него вытекает, в частности, и невозможность построения вечного двигателя второго рода, или, что то же самое, утверждение, что предоставленные сами себе тела стремятся к равновесию. Закон возрастания энтропии является тем же вторым началом термодинамики. Различие формальное, а содержание то же. А самое главное: мы дали второму началу термодинамики трактовку на языке молекул.

В некотором смысле объединение этих двух законов под одну шапку не вполне удачно. Закон сохранения энергии - закон абсолютный. Что же касается закона возрастания энтропии, то, как следует из сказанного выше, он применим лишь к достаточно большому собранию частиц, а для отдельных молекул его просто невозможно сформулировать.

Статистический (это и обозначает относящийся к большому собранию частиц) характер второго начала термодинамики нисколько не принижает его значения. Закон возрастания энтропии предопределяет направление процессов. В этом смысле энтропию можно назвать директором-распорядителем природных богатств, а энергия служит у нее бухгалтером.

Флуктуации

Итак, самопроизвольные процессы ведут систему к наиболее вероятному состоянию - к возрастанию энтропии. После того как энтропия системы стала максимальной, наступает равновесие.

Но это вовсе не означает, что молекулы приходят в состояние покоя. Внутри системы идет интенсивная жизнь. Поэтому, строго говоря, любое физическое тело каждое мгновение "перестает быть самим собой", взаимное расположение молекул в каждое последующее мгновение не такое, как в предыдущее. Таким образом, значения всех физических величин сохраняются "в среднем", они не строго равны своим наиболее вероятным значениям, а колеблются около них. Отклонение от равновесных наиболее вероятных значений называется флуктуацией. Величины разных флуктуации крайне незначительны. Чем больше величина флуктуации, тем она менее вероятна.

Среднее значение относительной флуктуации, т. е. доли интересующей нас физической величины, на которую эта величина может измениться благодаря тепловым хаотическим движениям молекул, может быть примерно представлено выражением l/J/V, где N - число молекул изучаемого тела или его участка. Таким образом, флуктуации заметны для систем, состоящих из небольшого числа молекул, и совсем незаметны для больших телл содержащих миллиарды миллиардов молекул.

Формула 1/√N показывает, что в одном кубическом сантиметре газа плотность, давление, температура, а также любые другие свойства могут меняться на долю 1/√3*1019, т. е. примерно в пределах 10-8%. Такие флуктуации слишком малы, чтобы можно было обнаружить их опытом. Однако совсем иначе обстоит дело в объеме кубического микрометра. Здесь N = 3.107 и флуктуации будут достигать измеримых величин порядка уже сотых долей процента.

Флуктуация представляет собой "ненормальное" явление в том смысле, что она приводит к переходам от более вероятного состояния к менее вероятному. Во время флуктуации тепло переходит от холодного тела к горячему, нарушается равномерное распределение молекул, возникает упорядоченное движение.

Может быть, на этих нарушениях удастся построить вечный двигатель второго рода?

Представим себе, например, крошечную турбинку, находящуюся в разреженном газе. Нельзя ли устроить так, чтобы эта маленькая машина откликалась на все флуктуации какого-либо одного направления? Например, поворачивалась бы, если бы число молекул, летящих вправо, становилось больше числа молекул, движущихся влево. Такие маленькие толчки можно было бы складывать, и в конце концов совершилась бы работа. Принцип невозможности вечного двигателя второго рода был бы опровергнут.

Но, увы, подобное устройство принципиально невозможно. Подробное рассмотрение, учитывающее, что турбинка имеет свои собственные флуктуации, тем большие, чем меньше ее размеры, показывает, что флуктуации вообще не могут произвести какую бы то ни было работу. Хотя нарушения стремления к равновесию возникают беспрерывно вокруг нас, они не могут изменить неумолимого хода физических процессов в сторону, увеличивающую вероятность состояния, т. е. энтропию.