Выбрать главу

Интерпретация аргументов Паскаля и Ферма была очевидна для де Мере. Но что эти цифры означают на самом деле? Большинство людей интуитивно понимают, что это означает, когда какое-то явление имеет ту или иную вероятность, но на самом деле на кону глубокий философский вопрос[25]. Предположим, я говорю: вероятность, что выпадет орел, когда подбросят монетку, составляет 50 %. То есть если я буду подбрасывать монетку снова и снова, приблизительно в половине случаев она ляжет орлом вверх. Но это не означает, что монетка гарантированно упадет орлом вверх ровно в половине случаев. Если я подброшу монетку 100 раз, она может упасть орлом вверх 51, или 75, или все 100 раз. Может быть любое количество орлов. Почему же де Мере все-таки обратил внимание на расчеты Паскаля и Ферма? Они отнюдь не гарантировали, что его первая стратегия будет успешной в каждом случае. Де Мере мог всю оставшуюся жизнь биться об заклад, что 6 будет выпадать каждый раз, когда кто-либо бросит кость четыре раза подряд, и больше никогда не выиграть, несмотря на расчет вероятности. Это покажется нелепым, но ничто в теории вероятности (или в физике) не исключает такого поворота событий.

Так о чем же говорит нам теория вероятности, если она ничего не гарантирует в отношении того, как часто то или иное событие может иметь место? Если бы де Мере задал этот вопрос, ему долго пришлось ждать на него ответа. Полвека. Первым, кто в 1705 году незадолго до смерти понял, как надо воспринимать зависимость между вероятностью и частотой событий, был швейцарский математик Якоб Бернулли. Бернулли показал, что если вероятность падения монетки орлом составляет 50 %, то вероятность того, что процент «орлов», которые действительно выпадут, будет отличаться от 50 % на какой-то процент, но эта разница будет становиться все меньше и меньше, чем больше раз вы подбросите монетку. Вероятность падения монетки орлом в 50 % случаев будет выше, если вы подбросите монетку 100 раз, чем если вы подбросите ее всего два раза. В рассуждениях Бернулли есть нечто сомнительное, поскольку он использует идеи из теории вероятности, чтобы объяснить, что означает сама вероятность. Бернулли не осознавал (это было полностью обосновано только в ХХ веке), что можно доказать: если вероятность падения монетки орлом составляет 50 % и подбрасывать монетку бесконечное число раз, то (практически) наверняка в половине случаев выпадет орел. Или в случае со стратегией де Мере, если бросать кости бесконечное число раз, в каждой игре ставя на 6, практически гарантирована победа в 51,7477 % игр. Это закон больших чисел, и он подтверждает одно из наиболее важных толкований теории вероятности[26].

Паскаль не был поклонником азартных игр, поэтому даже забавно, что один из главных его вкладов в математику связан именно с этим. Еще более иронично то, что чуть ли не самую большую известность ему принесло… пари, пари Паскаля. В конце 1654 года с Паскалем случилось нечто мистическое, и этот случай изменил его жизнь. Он перестал заниматься математикой, стал адептом индивидуалистических принципов голландского теолога Корнелия Янсения, противоречивого христианского движения в католицизме в XVII веке. И начал активно писать о вопросах теологии. Пари Паскаля, как это теперь называется, впервые появилось в его религиозных работах. Поверить в Бога, писал Паскаль, – это как сделать ставку на то, есть ли Бог или нет. Убеждения же человека сводятся к тому, что он ставит на одно или на другое. Но прежде чем сделать ставку, человек хочет знать, каковы его шансы и что его ожидает, если он выиграет или проиграет. Паскаль рассуждал так: если вы делаете ставку на то, что Бог есть, соответствующим образом проживаете жизнь, и оказывается, что вы были правы, то обретете бессмертие в раю. Если окажется, что вы не правы, то просто умрете и ничего не произойдет. Вы также просто умрете, если поставите на то, что Бога нет, и выиграете. Но если поставите на то, что Бога нет, и проиграете, то будете осуждены на вечные муки. Решение этой дилеммы простое: христианская вера рациональная, а оборотная сторона атеизма слишком пугающая.

Несмотря на увлеченность теорией случая, Луи Башелье не слишком везло в жизни. Своей работой он внес фундаментальный вклад в физику, финансы, математику. Но так и не вышел за рамки академической респектабельности. Всякий раз, когда на пути Башелье начинала маячить удача, она ускользала от него в самый последний момент. Родившись в 1870 году в Гавре, шумном портовом городе на северо-западе Франции, молодой Луи был перспективным студентом. Он блистал знаниями математики в старших классах лицея, в октябре 1888 года получил степень бакалавра естественных наук. У него был достаточно хороший аттестат, с которым он вполне мог рассчитывать на учебу в одном из элитных французских университетов, дипломы которых служили залогом того, что их обладателям уготована судьба стать государственными чиновниками высшего ранга или учеными. Он вырос в купеческой семье, в которой были ученые-любители, художники. Учеба в Гранд-Эколь открывала перед Башелье двери к профессиональному занятию интеллектуальным трудом, двери, которые были плотно закрыты для его предков.

Но не успел Башелье подать заявление в Гранд-Эколь, как его родители скончались. Он остался с незамужней старшей сестрой и трехлетним братом на руках. Два года Башелье занимался семейным винодельческим бизнесом, пока в 1891 году его не призвали на военную службу. Год спустя, уволившись с нее, Башелье смог вернуться к учебе. Ему было чуть больше двадцати лет, у него не было ни дома, ни семьи, которая бы его поддержала. Выбор был ограниченный. По возрасту поступать в Гранд-Эколь было уже невозможно. Башелье выбрал менее престижный Парижский университет.

В аудиториях Сорбонны, конечно, тоже можно было получить превосходное образование. В профессорско-преподавательский состав этого университета входили некоторые из самых замечательных умов Франции того времени. Это был один из немногих университетов во Франции, в котором профессорско-преподавательский состав имел возможность заниматься еще и научно-исследовательской работой, а не только преподавать предметы студентам. Башелье быстро выделился на фоне сверстников, хотя его оценки и были не самыми лучшими. В числе небольшой группы студентов, которая превзошла его, были сокурсники Башелье – Поль Ланжевен и Альфред-Мари Лиенар, известные физикам и математикам так же, как и сам Башелье, если не больше. Находиться в такой компании было очень полезно. Получив диплом бакалавра, Башелье остался в университете в докторантуре и начал работу над диссертацией – той самой, о спекуляциях на финансовых рынках, которую позднее выудил с библиотечных полок Самуэльсон. Курировал его работу Анри Пуанкаре – наверное, самый известный французский математик и физик того времени.

Пуанкаре был идеальным наставником для Башелье[27]. Он обогащал каждую область знаний, с которой ему приходилось иметь дело: математику, астрономию, физику, инженерию. Окончив Гранд-Эколь, научной и исследовательской работой Пуанкаре занимался, как и Башелье, в Парижском университете. Но большую часть своей жизни он проработал профессиональным горным инженером, став в конечном итоге главным инженером Французского шахтерского корпуса. Так что он в полной мере смог оценить важность прикладной математики – даже в такой нетрадиционной (для того времени, разумеется) области, как финансы. Башелье наверняка не написал бы свою диссертацию, не окажись у него научного руководителя, который обладал такими обширными знаниями, как Пуанкаре. Кроме того, Пуанкаре был влиятельной фигурой в научных и политических кругах Франции, а стало быть, его авторитет служил хорошей защитой для студента, чья исследовательская работа могла быть неоднозначно встречена научным сообществом того времени.

вернуться

25

Сложные, но читабельные описания философских вопросов, связанных с интерпретацией теории вероятности, см. у Хаека (2012 г.), Скирмса (1999 г.) или Хокинга (1990 г.).

вернуться

26

Подробнее о законе больших чисел см. у Каселла и Бергера (2002 г.) и Биллингсли (1995 г.). См. также работу Башелье (1937 г.).

вернуться

27

Подробнее о Пуанкаре см. у Мавина (2005 г.) или Галисона (2003 г.), а также в их списках использованных источников.