Выбрать главу
<статистическая матри[57] ца>. Эта система охватывает квантовую и волновую механику, теорию атомных спектров, химию и теорию других свойств материи, как, например, проводимости, ферромагнетизма и т. д. Соотношения между этими четырьмя замкнутыми системами понятий можно, пожалуй, обрисовать следующим образом. Первая система содержится в третьей как предельный случай, когда скорость света можно считать бесконечной; она содержится также в четвертой как предельный случай, когда планковский квант действия можно считать бесконечно малым. Первая и отчасти третья системы необходимы для четвертой как априорное основание для описания экспериментов. Вторая система может быть без труда связана с каждой из трех других и особенно важна в соединении с четвертой. Независимость существования третьей и четвертой систем наводит на мысль о существовании пятой замкнутой системы понятий, в которой первая, третья и четвертая содержатся как предельные случаи. Эта пятая система когда-нибудь будет найдена в связи с теорией элементарных частиц. При этом перечислении замкнутых систем понятий мы оставили в стороне общую теорию относительности, так как эта система понятий еще не нашла, пожалуй, своей окончательной формы, но следует отметить, что она определенно отличается от четырех других систем. После этого краткого обзора вернемся к более общему вопросу о том, что именно следует рассматривать в качестве основания таких замкнутых систем аксиом и определений. Важнейшая черта состоит, пожалуй, в том, что можно найти непротиворечивое математическое представление системы. Такое представление гарантирует, что сама система не содержит никаких внутренних противоречий. Далее, система должна быть пригодной для описания широкой области опыта. Многообразию явлений в рассматриваемой области должно соответствовать многообразие решений, допускаемых уравнениями математической схемы. Границы этой области опыта не могут быть, вообще говоря, выведены из понятий. Понятия не определены строго в отношении их соотнесения с природой - в противоположность их строгому определению в отношении их возможных взаимных связей. Границы применимости понятий должны, следовательно, находиться эмпирически, то есть просто из того факта, что эти понятия начиная с определенных моментов более не достаточны для полного описания наблюдаемых явлений. После этого краткого анализа структуры современной физики следует обсудить соотношение между физикой и другими ветвями естествознания. Ближайшая соседка физики - химия. Фактически обе эти науки слились благодаря квантовой теории в нечто совершенно единое. Но сто лет назад они еще далеко отстояли друг от друга, их методы исследования были совершенно различны, и понятия химии в то время еще не имели никаких аналогичных им понятий в физике. Такие понятия, как валентность, активность, растворимость или летучесть, имели скорее качественный характер, и химия в то время вряд ли являлась точной наукой. Как только в середине прошлого [58] столетия была развита теория теплоты, ее начали применять к химическим процессам, и с этого времени научные работы в этой области определялись надеждой, что в один прекрасный день закономерности химии можно будет свести к механике атома. Но необходимо подчеркнуть, что в рамках ньютоновской механики это оказалось невозможным. Чтобы дать количественное описание химических закономерностей, необходимо сформулировать значительно более глубокую систему понятий атомной физики. Это удалось в конце концов сделать в квантовой теории, корни которой, таким образом, лежат в химии в такой же степени, как и в атомной физике. Далее было легко осознать, что химические закономерности не могут быть сведены просто к ньютоновской механике атомных частиц, так как химические элементы обнаруживают в своем поведении степень устойчивости, совершенно не свойственную механическим системам. Но только в боровской теории атома 1913 года эта точка зрения была высказана совершенно отчетливо. В качестве конечного результата можно, например, установить, что химические понятия в определенном смысле являются дополнительными по отношению к механическим понятиям. Если мы знаем, что атом находится в
<низшем энергетическом состоянии>, определяющем его химическое поведение, то мы не можем говорить в то же самое время о движении электронов в этом атоме. Современное соотношение между биологией, с одной стороны, и физикой и химией - с другой, имеет, возможно, определенное сходство с соотношением между химией и физикой, имевшимся сто лет назад. Методы биологии весьма отличаются от методов физики и химии, а типично биологические понятия имеют скорее качественный характер, чем характер понятий точных естественных наук. Такие понятия, как жизнь, орган, клетка, функции органа, ощущение, не имеют подобных себе в физике или химии. С другой стороны, существенный прогресс, достигнутый в последние сто лет в биологии, получен благодаря применению к живым организмам законов физики и химии, и все устремления современной биологии направлены на то, чтобы объяснить биологические явления на основе известных физических и химических закономерностей. Здесь встает вопрос, обоснованна ли эта надежда. Подобно тому как ранее в химии, ныне на основании самых простых биологических опытов осознают, что живые организмы обнаруживают такую степень устойчивости, какую вообще сложные структуры, состоящие из многих различных молекул, без сомнения, не могут иметь только на основе физических и химических законов. Поэтому к физическим и химическим закономерностям должно быть что-то добавлено, прежде чем можно будет полностью понять биологические явления. В отношении этого вопроса в биологической литературе часто обсуждаются две четко отличающиеся друг от друга точки зрения. Одна из них ссылается на эволюционное учение Дарвина в его отношении к современной генетике. Согласно этой теории, единственным понятием, которое необходимо добавить к физике и химии, [59] чтобы понять жизнь, является понятие истории. Огромный период времени, примерно в четыре миллиарда лет, прошедший со времени образования Земли, дал природе возможность перебрать почти неограниченное многообразие молекулярно-групповых структур. Среди этих структур в конце концов появились такие, которые могли самоусложняться на основе более мелких групп окружающего вещества, и подобные структуры могли поэтому создаваться в большом количестве. Случайные изменения структур обусловливали еще большее многообразие имевшихся структур. Различные структуры вступали в борьбу за вещества, которые можно было использовать в окружающей материи. Таким образом, благодаря дарвиновскому отбору, благодаря <выживанию наиболее приспособленных> осуществилось в конце концов развитие живых организмов. Вряд ли можно сомневаться в том, что теория содержит очень большую долю истины, и многие биологи утверждают, что для объяснения всех биологических явлений вполне достаточно добавить к замкнутой системе понятий физики и химии понятия истории и развития. Один из аргументов, который часто приводят в пользу этой теории, подчеркивает, что повсюду, где можно проверить законы физики и химии, они всегда оказываются справедливыми также и в отношении живых организмов. Нельзя указать, кажется, ни одной точки, в которой можно было бы обнаружить действие особой жизненной силы, отличной от известных сил физики. С другой стороны, именно этот аргумент очень много потерял в смысле своей убедительности в результате развития квантовой теории. Так как понятия физики и химии образуют замкнутую и непротиворечивую систему, а именно систему квантовой теории, уже из этого с необходимостью следует, что всюду, где эти понятия вообще могут быть применены для описания явлений, должны быть справедливы и связанные с этими понятиями законы. Всегда, когда живые организмы рассматриваются как физические и химические системы, они должны и вести себя как таковые. Единственный вопрос, касающийся степени правильности этой точки зрения, состоит в том, дают ли физические и химические понятия возможность полного описания организмов. Биологи, отвечающие на этот вопрос