Выбрать главу

Нещо повече, много „непроверими“ теории накрая са станали проверими. Потрябвали са две хиляди години, за да бъде доказано съществуването на атомите, след като те били предложени за първи път от Демокрит. Физици от XIX в. като Лудвиг Болцман са били преследвани до смъртта си за това, че са вярвали в тази теория, но днес разполагаме с великолепни фотографии на атомите. Самият Паули е въвел концепцията за неутриното през 1930 г., а то е частица, която е толкова неуловима, че може да мине през блокчета от твърдо олово с големината на цяла звездна система и да не бъде абсорбирано. Паули казал: „Аз извърших най-големия грях — въведох частица, която не може да бъде наблюдавана.“ Оказало се „невъзможно“ да бъде открито неутриното, затова в продължение на няколко десетилетия то не било смятано за нещо повече от научна фантастика. Но днес можем да представим като доказателство снопове от неутрина.

Всъщност има голям брой експерименти, които ще осигурят първите индиректни тестове на струнната теория, както се надяват физиците:

— Големият адронен колайдер (LHC) може да се окаже достатъчно мощен, за да произвежда „с-частици“ или суперчастици, които представляват по-високите вибрации, предсказани от суперструнната теория (както и от други суперсиметрични теории).

— Както споменах по-горе, през 2015 г. Лазерната интерферометърна космическа антена (LISA) ще бъде изстреляна в Космоса. LISA и нейният приемник — наблюдателят на Големия взрив, могат да се окажат достатъчно чувствителни, за да проверят няколко теории за „положението преди Големия взрив“, включително и версиите на струнната теория.

— Голям брой лаборатории изследват наличието на по-висши измерения чрез проучването на отклонения от прочутия закон на Нютон за обратните квадрати в милиметров мащаб. (Ако има четвърто пространствено измерение, то тогава гравитацията трябва да се намалява от обратния куб, а не от обратния квадрат.) Последната версия на струнната теория (М-теорията) предрича съществуването на единадесет измерения.

— Много лаборатории се опитват да открият тъмна материя, тъй като Земята се движи в космически вятър от тъмна материя. Струнната теория прави специфични, проверими предположения за физическите свойства на тъмната материя, защото тя вероятно е по-висока вибрация на струната (например фотиното).

— Има надежда, че серия от допълнителни експерименти (например върху неутринната поляризация на Южния полюс) ще открие присъствието на мини черни дупки и други странни обекти чрез анализ на аномалиите в космическите лъчи, чиито енергии могат да превишат лесно тези на LHC. Експериментите с космически лъчи и LHC ще прокарат нова, вълнуваща граница отвъд стандартния модел.

— И има някои физици, които защитават възможността Големият взрив да е бил толкова експлозивен, че може би една съвсем малка суперструна е избухнала и е достигнала астрономически размери. Както пише физикът Александър Виленкин от университета „Тъфс“: „Има една много вълнуваща възможност: суперструните… да могат да достигат астрономически размери… Тогава ще бъдем в състояние да ги наблюдаваме на небето и да проверим директно суперструнната теория.“110 (Вероятността да бъде открита огромна, остатъчна суперструна, която е избухнала по време на Големия взрив, е съвсем малка.)

Дали физиката е незавършена?

През 1980 г. Стивън Хокинг спомогна за разпалването на интерес към една теория на всичко със своята лекция, която бе озаглавена „Дали се вижда краят на теоретичната физика?“, по време на която каза: „Можем да видим една завършена теория още докато са живи някои от тук присъстващите.“ Той твърдял, че има шанс от петдесет на петдесет процента окончателната теория да бъде открита през следващите двадесет години. Но когато 2000 година настъпи и нямаше съгласие по въпроса за теорията на всичко, той промени мнението си и каза, че има възможност от петдесет на петдесет процента тя да бъде открита след още двадесет години.

вернуться

110

Alexander Vilenkin, New Scientist Magazine, November 18, 2006, с. 51.