Сохранилось довольно много рукописей Галилея, в которых он «предусмотрительно» не указывал даты. Но не подумайте, что точную дату открытия определили, измерив каким-то современным методом (например, радиоуглеродным) точный возраст чернил или бумаги (к сожалению, точность имеющихся у нас методов для этого недостаточна). Выход нашелся, и он оказался более интересным и даже детективным.
Исследовав имеющиеся рукописи Галилея с помощью методов спектрального анализа, ученые установили, что он в течение 42 лет пользовался 20 видами различных чернил. Кроме научных записей, ученый вел и расходные книги, в которых, естественно, проставлял даты. Оказалось, что чернила, которыми записано описание экспериментов на Пизанской башне, те же, какими он делал записи о доходах и расходах в домовой книге в 1604 г. Отсюда и сделали вывод, что и открытие было сделано в том же году.
Вернемся к невесомости. Теперь нужно ради физической точности признаться в одном важном предположении, о котором мы еще не сказали.
Дело в том, что не всякое падение тел можно считать состоянием невесомости. Невесомость соответствует состоянию так называемого свободного падения, когда на тела ничего, кроме силы тяжести, не действует. В таком случае падение в воздухе, когда действуют силы сопротивления воздуха, не является, откровенно говоря, свободным падением. Однако наша конфета, которую оторвал от нити котенок, находилась почти в невесомости, потому что в тех условиях силы сопротивления воздуха очень малы. Вот если бы конфета была… на парашюте, тогда ни о какой невесомости и говорить нечего.
«Ньютонова гора» – прогнозирование возможности создания искусственного спутника Земли
Из вышесказанного следует, что невесомость космического корабля, находящегося на орбите, связана с состоянием его падения на Землю или на другую планету, вокруг которой он движется. Когда-то еще Ньютон предложил способ, которым можно превратить тело в спутник Земли: нужно придать телу такую большую скорость, чтобы оно не упало на планету, а вышло на круговую орбиту вокруг нее.
Когда космический корабль (с выключенными двигателями!) находится на заданной орбите над Землей, то он и все тела внутри него находятся в состоянии падения, двигаясь с одинаковым ускорением. Таким образом, это и будет для всех этих объектов состоянием невесомости.
Чтобы будущих космонавтов подготовить к космическому полету, их тренируют на специальном самолете: «роняют» на несколько секунд вместе с самолетом с выключенными двигателями, чтобы люди ощутили то состояние, в котором им предстоит потом находиться достаточно долго.
Итак, невесомость действительно можно почувствовать на космической орбите. Однако приблизиться к такому состоянию можно и в земных условиях, если уменьшить воздействие на определенное тело всех других тел (в сравнении с действием Земли) и сделать так, чтобы тело и его опора (подвес) падали на Землю с одинаковым ускорением.
III. Гидро– и аэростатика
Как у физиков «появилось» атмосферное давление
Имя Эванджелисты Торричелли (1608–1647) навсегда вошло в историю физики как имя человека, впервые доказавшего существование атмосферного давления и создавшего первый барометр.
До середины XVII в. считалось бесспорным утверждение древнегреческого ученого Аристотеля о том, что вода поднимается за поршнем насоса потому, что «природа не терпит пустоты». Однако при сооружении фонтанов во Флоренции обнаружилось, что всасываемая насосами вода не желает подниматься выше 34 футов. Удивленные строители обратились за помощью к Галилею, который пошутил, что, вероятно, природа перестает бояться пустоты на высоте более 34 футов, но все же предложил разобраться в этом своим ученикам.
Эванджелиста Торричелли
Трудно сказать, кто первым догадался, что высота поднятия жидкости за поршнем насоса должна быть тем меньше, чем больше ее плотность. Поскольку плотность ртути в 13 раз больше, чем у воды, высота ее поднятия за поршнем будет во столько же раз меньше.
Подобный опыт, проведенный Вивиани по инициативе Торричелли, предоставлял возможность «перейти» с уличной площадки в лабораторию, что и было сделано.
Осмысливая результаты эксперимента, Торричелли делает два вывода: пространство над ртутью в трубке является пустым (позже его назовут «торричеллиевой пустотой»), а ртуть не выливается из трубки обратно в сосуд потому, что атмосферный воздух давит на поверхность ртути в сосуде.
Из этого следовало, что воздух имеет вес! Это утверждение казалось настолько невероятным, что не сразу было принято учеными того времени.
Заметим, что о результатах своих опытов Торричелли сообщил своему другу М. Риччи, который жил в Риме. Хотя это письмо не было напечатано, оно разошлось в списках по всей Европе и вызвало появление работ других авторов (в том числе Б. Паскаля, О. Герике, Р. Бойля).
В своем письме Торричелли рассказывает: «…Я уже писал ранее, что занимаюсь разработкой определенного философского експеримента, имеющего отношение к пустоте, не для того, чтобы просто создать пустоту, а для того, чтобы сделать прибор, который показывал бы изменения в воздухе…»
Отсюда легко увидеть попытки создать то, что мы сейчас называем барометром – прибором для измерения атмосферного давления!
Дальше Торричелли пишет: «Мы живем, погруженные на дно океана воздушной стихии, о которой благодаря достоверным опытам известно, что воздух имеет вес, причем наибольшая его плотность – вблизи земной поверхности, где воздух имеет вес, составляющий примерно 1/400 веса воды». (Заметим, что значение, которое привел Торричелли, сейчас установлено с большей точностью.)
Таким образом, именно Торричелли дал нам понять, что воздух имеет определенную массу и действует с определенной силой – силой атмосферного давления, как говорят сейчас.
Открытие атмосферного давления и опыты с вакуумом способствовали разрушению одного из заблуждений – «страха пустоты». Устранение этой ошибки положительно сказалось на проведении дальнейших научных исследований.
В XVII–XVIII вв. опыты с пустотой вызывают большой интерес, наряду с учеными ими с увлечением занимаются и дилетанты. Появляются различные конструкции вакуумных поршневых насосов механического и ртутного типов.
Из опыта Торричелли позже родилась научная метеорология, однако окончательное признание его выводы получили лишь благодаря опытам замечательного французского математика и физика Блеза Паскаля.
Любознательный исследователь и по совместительству бургомистр Магдебурга Отто фон Герике тоже не остался в стороне от интересных свойств воздуха.
Он решил на опыте проверить возможность создания пустоты (вакуума), что привело его к изобретению воздушного насоса (1650 г.).
В 1654 г. Герике продемонстрировал с его помощью существование давления воздуха (знаменитый опыт с «магдебургскими полушариями»), определил его плотность, показал, что звук не распространяется в пустоте, что животные в безвоздушном пространстве гибнут и т. д.