Эффективность подобной системы амортизации может быть практически изменена в любом диапазоне путем изменения количества воздуха, поступающего в цилиндр и выпускаемого из него. По мнению зарубежных специалистов, основное достоинство пневмопружинных элементов состоит в том, что они позволяют достичь низкой частоты колебаний амортизируемой платформы. Это дает возможность в широком диапазоне снижать действующие нагрузки при относительно небольших горизонтальных перемещениях платформы. В целом же такая система обеспечивает снижение ускорений платформы центра управления вниз до 0,5 g, вверх до 3 g, а в горизонтальном направлении до 1 g, что, по американским данным, вполне допустимо для безопасного обслуживания оборудования управления подземными ракетными базами.
Многим читателям, вероятно, помнится описываемое в школьных учебниках явление резонанса. Оно состоит в том, что размах колебаний какого-либо тела резко возрастает, когда на его собственные колебания, частота которых определяется свойствами самого тела, накладывается действие внешних сил, имеющих ту же частоту. Классический пример резонанса — разрушение моста, по которому шел в ногу строй солдат.
О резонансе приходится думать и конструкторам систем амортизации ракет в шахтах. При расчетах они следят за тем, чтобы частота собственных колебаний ракетной амортизирующей системы, помещенной в шахту, находилась в определенном соотношении с частотой колебаний, которые могут возникнуть при воздействии ударной волны ядерного взрыва.
По мнению зарубежных специалистов, достоверный расчет систем амортизации предполагает очень точное предварительное знание всех собственных частот колебаний амортизируемого объекта и частот вынужденных колебаний шахтного сооружения. Но если первые определяются сравнительно просто, значения других зависят от многих трудно учитываемых факторов, а потому и вычисляются весьма приближенно. Существенное влияние на частоты и амплитуды колебаний шахтных сооружений оказывает характер колебательных движений грунтовых пород. Однако для того чтобы выяснить качественную и количественную картину этих колебаний, необходимы сложные экспериментальные работы. Последнее, как считают зарубежные специалисты, составляет одну из серьезных научно-технических проблем, разрешение которой может значительно повысить степень защищенности ракетных комплексов от воздействия ядерных взрывов.
Таковы некоторые особенности учета механических колебаний при создании современных образцов боевой техники. Как видно, они непросты и требуют глубокого проникновения в суть разнообразных физических процессов. С дальнейшим развитием военного дела круг подобных проблем будет, несомненно, расширяться. Ученым, инженерам придется решать все новые и новые задачи. А это, в свою очередь, повысит требования к знаниям, кругозору тех специалистов, которым придется эксплуатировать, использовать в бою новые образцы вооружения и боевой техники.
САМОЛЕТ — ПТИЦА?
В удивительном прогрессе авиации с момента ее зарождения и до наших дней, наряду с колоссальным ростом грузоподъемности самолетов, высоты и дальности полета, особенно выделяются успехи в штурме скоростей. Взгляните на график (рис. 6). На нем показано, как из года в год росли абсолютные рекорды скорости полета самолетов. Из графика видно, что с 1906 по 1962 год скорость увеличилась примерно от 50 до 3 тыс. км/час, т. е. в 60 раз! Какими путями был достигнут такой гигантский скачок скоростей? Конечно, прежде всего увеличением мощности авиационных двигателей, и главный прирост в рекордах скоростей произошел с внедрением в авиацию реактивных двигателей. Да и материалы, из которых делают самолеты, стали более прочными.