Каркасные защитные укрытия состоят из каркаса и покрова. В зависимости от конструкции и типа каркаса они подразделяются на два вида: с нестроительной обшивкой и со строительной (несущей) обшивкой. Наибольшее применение находят каркасные укрытия с нестроительной обшивкой. В качестве каркаса здесь служат стандартные строительные элементы — фермы, арки, подпорки, перемычки, что позволяет изготовлять укрытия в короткие сроки и при небольших экономических затратах. Укрытия с несущей обшивкой представляют собой комплекс стандартных элементов, изготовляемых из гофрированных металлических или бетонных отсеков. Укрытия эти, как правило, герметичны.
Защитные укрытия «твердого» типа применяются как для защиты ракет от атмосферных осадков, так и для защиты от действия поражающих факторов ядерного оружия. В качестве примера «твердых» укрытий можно назвать укрытия типа «апельсиновая корка», применяемые для ракет средней дальности «Юпитер» (рис. 23). Укрытие предназначается для защиты нижней части ракеты и пускового стола от действия атмосферы и состоит из нескольких конических створок, открытие и закрытие которых производится специальными механизмами.
Рассмотренные здесь защитные укрытия позволяют, как считают зарубежные специалисты, обеспечить защиту ракет от вредного действия атмосферы и способствуют повышению технической надежности ракетных систем. Однако и они не решили всех проблем. Возросшие требования к обеспечению неуязвимости ракет от поражающих факторов ядерного оружия и повышению их технической надежности заставили зарубежных военных специалистов пойти по линии разработки и строительства подземных, так называемых шахтных пусковых установок. Но едва первые ракеты спрятались под землю, как возникли новые и не менее сложные проблемы. И опять здесь не обошлось без вмешательства все той же погоды.
Капризы микроклимата. Итак, на определенном этапе развития ракетного дела зарубежные военные специалисты решили, что дальнейшему повышению живучести, технической и боевой надежности стратегических ракет наиболее полно отвечает использование шахтных пусковых установок. К тому же, по их мнению, шахтные ракетные комплексы при сравнительно небольших эксплуатационных затратах обеспечивают боевое дежурство наибольшего количества ракет. И атмосферных влияний можно бы теперь не бояться. Хотя изучение физики атмосферы шахт показало, что температура шахтной среды незначительно отличается от среднегодовой температуры воздуха снаружи, которая для США в зависимости от дислокации ракетных баз колеблется от 4,4 до 21 °C, все-таки это была не поверхность земли. Так называемый микроклимат шахт оказался довольно стабильным.
Однако уже вскоре опыт содержания ракет «Титан II» и «Минитмен» на боевом дежурстве показал, что основные характеристики «естественного» микроклимата шахты (температура, влажность, давление и другие) далеко не так хороши и безобидны, как это вначале казалось. Больше того, исследования выявили, что в шахте образуется своя «живая» атмосфера — параметры воздуха не остаются в ней неизменными. Так, например, температура в верхней и нижней части шахты была различной. В свою очередь это вызывало циркуляцию воздуха, которая сопровождалась перераспределением тепла и влаги не только по глубине, но и по периметру шахты. В тех местах, где влажные потоки воздуха, перемещаясь, попадали в зоны с более низкой температурой, влага конденсировалась. В зонах с более высокой температурой она испарялась. Как сообщалось в печати, в этих условиях относительная влажность воздуха в нижней части шахты может превышать 90 % и, в зависимости от температуры атмосферы шахты, содержать от 1,5 до 7,8 г воды на каждый кубический метр воздуха.
Выяснилась и еще одна неприятная вещь. В шахте, как и в атмосфере промышленного города, всегда присутствуют агрессивные пары. Только здесь картина получается более сложная, так как эти пары сильно концентрируются вследствие замкнутого объема шахты.